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Abstract—Program slicing aims to reduce a program to a
minimal form that produces the same output for a given slicing
criterion. Program slicing approaches divide into static and
dynamic approaches: whereas static approaches generate an over-
approximation of the slice that is valid for all possible program
inputs, dynamic approaches rely on executing the program and
thus generate an under-approximation of the slice that is valid
for only a subset of the inputs. An important limitation of static
approaches is that they often do not generate an executable
program, but rather identify only those program components
upon which the slicing criterion depends (referred to as a closure
slice). In order to overcome this limitation, we propose a novel
approach that combines static and dynamic slicing. We rely on
observation-based slicing, a dynamic approach, but protect all
statements that have been identified as part of the static slice
by the static slicer CodeSurfer. As a result, we obtain slices that
cover at least the behavior of the static slice, but that can be
compiled and executed. We evaluated this new approach on a set
of 57 C programs and report our preliminary findings.

Index Terms—program slicing, static slicing, dynamic slicing,
program dependence analysis

I. INTRODUCTION

Program slicing is a program decomposition technique that
has a wide range of applications in various areas such as
debugging, program comprehension, software maintenance, re-
engineering, refactoring, testing, reverse engineering, compre-
hension, tierless or multi-tier programming, commit decom-
position, and vulnerability detection [1]-[7].

At its introduction program slicing was defined by Mark
Weiser as follows: “Starting from a subset of a program’s
behavior, slicing reduces that program to a minimal form
which still produces that behavior” [1]. The initial subset is
referred to as a slicing criterion. Key to this definition is that
a slice is an executable program. A few years later Ottenstein
and Ottenstein observed that “The program dependence graph
(PDG) ... allows programs to be sliced in linear time” [8].
However this approach brings a key difference: the resulting
slice is not guaranteed to be an executable program. Thus,
in contrast to Weiser’s original definition, which produced
executable slices, the slices produced from a PDG are referred
to as closure slices as their computation involves computing
a transitive closure.

This dimension of executable slice versus closure slice is
one of three dimensions that are used to classify program
slices [9]. The second dimension, static versus dynamic, was
introduced by Korel and Laski [10] who observed that in some
applications, such as debugging, it is not necessary to produce
all of the behavior of the original program. Rather, for these
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applications, it suffices to preserve the behavior for only a
selected set of inputs.

The final dimension, backward versus forward, was intro-
duced by Horwitz et al. [11] who observed that the dependence
edges of a PDG could be traversed in either direction. In
contrast to backward slicing, which captures those program
components that affect the slicing criterion, a forward slice
identifies those program components affected by the slicing
criterion. This paper considers only backward slicing.

Despite being efficient to compute, closure slices are not
guaranteed to be executable programs. For example, Horwitz
et al. provide an example in which two calls to a procedure
require different subsets of the procedure’s formal parameters
and different subsets of the procedure’s statements. However,
it is not just closure slices that can fail to produce executable
programs. A long standing challenge for executable slicing
algorithms has been to guarantee that the resulting slice is a
syntactically correct program with the correct semantics [12].

One recent variation of dynamic slicing, referred to as
observation-based slicing [12], approaches the slicing problem
from a different angle. Rather than using static or dynamic
analysis to determine which components of the program
to include in the slice, observation-based slicing tentatively
removes components from the program and then observes the
impact of this removal. A removal that has no impact on the
behavior of the slicing criterion is made permanent. By its very
nature an observational slice is guaranteed to be executable.

What is missing is a static slicing algorithm that can make
the same executability guarantee as observation-based slicing.
This paper provides such an algorithm through the combi-
nation of a static closure slicer and a dynamic observation-
based slicer. The key idea is to protect the code of the
static slice from removal during observation-based slicing.
The result is a Quasi-Static Executable Slice (QSES), which
is a safe over-approximation to the static slice that is also
executable. Specifically we investigate the combination of
CodeSurfer [13], which efficiently computes static closure
slices, and pORBS [14], which uses a parallel algorithm to
compute (dynamic) observation-based slices. While in theory
the combination computes static executable slices, in practice
there are some interesting corner cases related to code struc-
ture, memory layout, and termination when slicing C code.
The remainder of this paper introduces ORBS, CodeSurfer,
and then QSES in greater detail, provides a preliminary
evaluation of QSES by considering three research questions,
and finally presents some concluding remarks.



II. BACKGROUND: ORBS AND CODESURFER

a) Observation-based slicing: Our approach builds on
Observation-Based Slicing (ORBS) [12], the algorithm for
which is identical to Algorithm 1 except that ORBS omits Line
12 and the input C. ORBS takes as input a source program P
to slice, a slicing criterion identified by a program variable v,
a program location [ and a set of inputs Z, and a maximum
window size §. ORBS is language agnostic so it considers the
program as a sequence of lines of text, p; to p,. It can be made
slightly more efficient, by considering, for example, program
statements, at the expense of performing minimal language-
specific parsing [15].

ORBS proceeds as follows. First, the program is instru-
mented by SETUP, which inserts a side-effect free line that
tracks the value of variable v, immediately before line [. This
is to ensure that the algorithm detects any changes to that
variable at that location upon the removal of other lines. The
instrumented program is then run on each input in Z and the
tracked values are captured in V/, which is used as an oracle
of the expected output. Then Line 4 reverses the lines of the
code so that they are effectively considered bottom-up, which
is more efficient as it can slice out the occurrences of a variable
before considering its declaration.

The rest of the algorithm iterates over the program tenta-
tively removing lines until no more lines can be deleted. Each
iteration over the program (Lines 8-25), tries to remove up
to § lines starting with the current line. After each removal,
the program is compiled. If it compiles, it is executed and its
output is captured in V’. If the output matches the oracle V,
then the current removal can be safely made permanent. After
multiple passes over the program, the process will eventually
stabilize. When no more lines can be removed, S corresponds
to a dynamic observation-based slice.

In principle the removal might consider arbitrary subsets
of the program or, as with delta debugging [16], start by
considering half the program, then quarters, etc., but these
approaches can prove quite expensive [12]. Instead ORBS uses
a window of up to § contiguous lines. It thus computes 1-
minimal dynamic slices [12] (no single line can be removed
from the slice). Based on past empirical data, we use § = 4
in our experiments [12], [14].

b) Static SDG-based slicing: In addition to ORBS we
make use of GrammaTech’s CodeSurfer, to compute static
closure slices. CodeSurfer builds a System Dependence Graph
(SDG) [11], [17] for a program and then computes a slice by
walking this graph. The result is a set of graph vertices, which
we map back to lines of code in the original source. Because
the SDG does not represent much of the concrete syntax (e.g.,
the braces delimiting a block), the identified source code is
typically not an executable program.

III. APPROACH

One obvious advantage of the ORBS approach over static
closure slicing is that the resulting slice is guaranteed to be
an executable program. One obvious disadvantage is that the
slice only preserves the behavior of the original program when

it is run on the inputs from the set Z. Our key insight is that if
before applying ORBS to the program we protect from deletion
the lines of a (non-executable) static closure slice, then the
result should preserve the behavior of the static slice, and be
executable. In other words, the result is an executable static
slice. In addition to the protected lines of the closure slice,
this slice includes those parts of the code that ORBS retains
to ensure the slice compiles and executes correctly. We refer to
this combination as Quasi-Static Executable Slicing (QSES).
Intuitively, it is not necessary to check the behavior of the
protected lines (make each of them a slicing criteria) because
by its very definition a closure slice includes any required
supporting computations.

Algorithm 1 depicts the QSES algorithm. The two differ-
ences compared to ORBS are that QSES takes as input C' all
the lines of the static closure slice, and second, it will never try
to remove a window of lines that overlaps with C' (see Line
12). Thus QSES never removes any line that is part of the
static slice. For all other lines, QSES, like ORBS, attempts
to remove the lines and then observes the behavior of the
resulting program. If the program without the lines produces
the same behavior, then the lines can be safely removed.

1 QSESLICE(P, v,l,Z,4, C)
Input : Source program P = {p1,...,pn}, slicing criterion
(v,1,7), maximum deletion window size d, and
static slice C'
Output: A slice, S, of P for (v,l,T)
2 O - SETUP(P,v,1);
3 V < EXECUTE(BUILD(O),Z);
4 S < REVERSE(O);

5 repeat

6 deleted <+ False;

7 1+ 1;

8 while i < lengrh(S) do

9 builds < False;

10 for j + 6 downto 1 do

1 57 — {5i7 ey Smin(lengrh(S),H»jfl)};
12 if ST NC = 2 then

13 S S5 —-S7;

14 B’ «+ BUILD(REVERSE(S"));
15 if B’ built successfully then
16 builds < True;

17 ‘ break

18 if builds then

19 V' « EXECUTE(B’,7);

20 if V =V’ then

21 S« S

22 ‘ deleted < True

23 else

24 | i i+1;

25 until —~deleted;
26 return REVERSE(S)

Algorithm 1: QSES algorithm. The main change with
respect to ORBS is highlighted.

Taking the intuition behind QSES one step further, the
inclusion of all necessary supporting computations in a closure
slice suggests that the ORBS execution check is superfluous.
In other words because all the lines that are important for



preserving the behavior of the program with respect to the
slicing criterion are part of the static closure slice, C, any
program that includes these lines and compiles should be
an executable static slice. Thus, we can simplify QSES by
removing the execution check (deleting Lines 19-20 and
making Lines 21-24 subordinate to the if statement on Line
18). We refer to the resulting algorithm as QSESo (QSES
Compile only). Program execution is expensive for ORBS and
we expect QSES¢ to slice more efficiently than QSES.

IV. EVALUATION

We implemented QSES using CodeSurfer and then modify-
ing ORBS to not delete lines identified by CodeSurfer. More-
over, for QSES, we modified ORBS to not attempt to execute
the code if it successfully compiles. To empirically evaluate
the two approaches, we quantitatively compare the resulting
slices and qualitatively consider some of the more interesting
examples using the following three research questions.

e RQ1: What needs to be added to a static closure slice
to render it executable? As a QSES slice is an extension
of a closure slice, we look at how much code needs to be
added to the closure slice and we investigate the different
patterns of code additions.

o RQ2: What is the impact on the resulting slices
of disabling ORBS’ execution check in QSES~? In
order to understand whether the static slice’s semantic
guarantees are sufficient to ensure that a compilable
program will execute correctly, we compare the slices
produced by QSES and QSES¢ in terms of their size,
and any semantic differences.

e RQ3: What is the impact on the slicing time of
disabling ORBS’ execution check in QSES~? Running
each potential slice during the ORBS slicing process
is expensive, especially when a potential slice fails to
terminate and ORBS must wait for a watchdog timer to
expire. We investigate the performance gained by QSES~
over QSES, by relying on the compilable aspect alone.

A. Subjects

We study 57 C programs gathered from three sources:

o Programs from the slicing literature: the original example
of Weiser [1], the SCAM Mug [18], the Montréal Boat
Example [19], and Word Count [2].

e Programs from the Milardalen WCET research
group [20], which have been used to compare and
evaluate WCET analysis tools.

e Programs from the Benchmarks Game [21], which are
designed to benchmark language implementations.

We omitted programs from the last two suites that span
multiple files, that fail to compile with -Im as the only compiler
flag enabled, and that are unsupported by the pycparser Python
library which we used to normalize (i.e., parse and pretty-
print) and instrument the programs with a slicing criterion
(i.e., a specific printf statement that captures the criterion).
After normalization, these programs range from 21 SLOC to
2988 SLOC, with an average of 192 SLOC, which renders

reviewing all slices by hand feasible. For each program, we
consider each assignment to a scalar variable as a separate
slicing criterion. This results in a total of 2389 slices, with an
average of 42 slices per source program.

B. Results

Our results are overviewed in Figure 1. Consistent with the
goals of the NIER track, this section focuses on Research
Question 1. To provide some context for our future research,
we summarize our preliminary findings for the remaining two
research questions.
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Fig. 1. Size of the slices as percentage of the original program, and differences
between slice sizes in SLOC.

a) RQI: RQl compares the slices produced by
CodeSurfer and QSES. Most differences are caused by lines
containing a single brace (i.e., ‘{’ or ‘}’). While essential
in maintaining the block structure of the code at the source
level, such lines are not represented in the SDG used by
CodeSurfer and thus not marked as protected lines of the static
closure slice. Numerically, these lines account for 87.6% of the
24625 lines showing a difference. Because these differences
are otherwise uninteresting, henceforth we ignore such lines.

The inclusion of required braces alone is sufficient for
65.3% of the slices, meaning that almost two-thirds of the
time the closure slice is a few braces away from being a static
executable slice. To make the remaining 829 slices executable,
QSES adds to the closure slice an average of 3.7 lines, with
a maximum of 16 lines (see the lower graph in Figure 1).
A manual inspection of the 3055 added lines found in the
829 slices reveals that 59% are related to the granularity at
which CodeSurfer slices, 39% to CodeSurfer’s representation
of declarations and control dependence, and the remaining 2%
a range of diverse causes.

In greater detail, the first group is made up of declarations
not protected by CodeSurfer because it slices at a finer level
of granularity than ORBS. Thus its slices can include a call
without including the actual parameters or the assignment of
the return value to a variable. Because ORBS must include the



entire line of text that includes a call, it causes QSES to require
the lines that declare the actual parameters and the variable
assigned the return value. For example, the following excerpt
from a CodeSurfer slice of word-count only requires the return
value of the call to scanf to maintain the same loop iterations
and thus does not include the two actual parameters. Therefore,
the declaration char ¢ goes unprotected but is required for the
program to correctly compile and execute.

1 char c; // unprotected
2 ...

3 while (scanf ("%c", &c) == 1)

The second group is made up of source code that has no
direct representation in CodeSurfer’s SDG. For example, the
representation of an if statement includes control dependence
edges labeled either true or false, but no explicit representation
of the keyword else. Thus, the line containing else in the
source code is never protected by CodeSurfer. This is exem-
plified by the following code. CodeSurfer, while capturing the
semantic information that the printf call occurs in the false
branch of the if, protects only Lines 1 and 7. Either Line 3 or
Line 5 can be removed as they are each independent of the
slicing criterion, but at least one needs to remain in the slice
to preserve its behavior. QSES removes Line 5 as it proceeds
from bottom to top; hence Line 3, even though it was not
protected by CodeSurfer, is part of the QSES slice.

1 if (d == 0.0)

2

3 return 0;
4

5 else
6 A

7 printf ("\nORBS:%f\n", w2);

8 )
The same lack of a direct representation applies to typedefs,
structs, and any labels in the code, which also go unprotected.

Turning to the differences with more diverse causes, we
first consider two examples where QSES uncovers “hidden”
dependences that can be challenging to model in a static
analysis tool. For example, in the slice of the following
function, declared using an old-style C function declaration,
MeanA is not used. Therefore CodeSurfer does not include its
declaration in the closure slice. However, without the declara-
tion MeanA defaults to type int, which, on the machine being
used, is four bytes while a double is eight. As a consequence
MeanB’s address on the stack changes. To preserve the original
behavior, ORBS retains the original declaration of MeanA as
a double. The dependence of MeanB on the declaration of
MeanA is a static analysis challenge.

1 void Calc_LinCorrCoef (ArrayA, ArrayB, MeanA, MeanB)
2 double ArrayBl[];

3 double Meanh;

4 double MeanB;

The second hidden dependence example is one that
CodeSurfer can be configured to model, which is disabled in
the default configuration. The value of len in the following
code is dependent on the assignment to buflen. Without the
assignment, the last argument of the call to read becomes
negative, effectively terminating the loop early because of an
error.

while (len = read(in, buf + end, (buflen - 256) - end)) {

1

2 e

3 buflen = (buflen >= _1M) ? (buflen + _1M) (buflen * 2);
4

}
CodeSurfer can be configured to include this dependence, but
in so doing becomes more conservative in its treatment of
IO library calls, which can lead to increased slice size. A
clear advantage of QSES is that it can cover a middle ground
between the two configurations provided by CodeSurfer.

A final example is tooling related as it is caused by the
deletion window size used by QSES. The following code can
only be removed by QSES when using a window size § > 6 as
all six lines need to be removed together in order to preserve

the semantics.
1 while (1)

{
{

break;
}
}

b) RQO2: QSESc is based on the assumption that because
the static slice includes all dependent computations, these
computations should have the correct behavior. Thus in theory,
the QSES execution check not only wastes time, but also leads
to larger than necessary slices.

Interestingly, disabling the execution check results in slices
that are only marginally smaller: 80% of the slices are identical
between QSES and QSES., and on average a QSES slice
is only 0.24 lines longer than a QSES¢ slice. Furthermore,
inspecting the resulting slices reveals that QSES¢ slices do
not always preserve the correct behavior. For example, in the
following code, removing the second line causes the call to
process to get captured by the loop, which still compiles, but
changes the behavior of the program.

1= 1>y

o v oW

1 for (from = to;
2 7
3 process (from,

(»from) from--)

to);

c) RQ3: In theory, ORBS spends considerable time
executing potential slices, especially when a potential slice
enters an infinite loop. We might thus expect QSES¢< to be
notably more efficient than QSES. However, we measured that
QSES¢ only provides a 4.7% average reduction in slicing
time. Looking at the individual slices reveals two patterns.
First, pPORBS aggressively caches past results, which greatly
reduces the number of actual compilations and executions
required. Second, there are slices for which the improvement is
dramatic. For example, one of the SCAM mug slices showed a
63% reduction in computation time because of the number of
timeouts QSES encounters while slicing. Perhaps more telling
is one of the spectral-norm1 slices where QSES¢ is 98%
faster. In this case the cause is the time the program takes
to run (17 seconds), which makes this example indicative of
the performance advantage when slicing larger, more complex,
longer running programs.

V. RELATED WORK

A. Observation-Based Slicing

In addition to the work on ORBS [12], discussed in Sec-
tion II, Binkley et al. [15] consider ORBS and what its slices
can tell us about the limits of static slicing. For example,



observation can capture dependencies that arise from “back
channels” such as data stored and later retrieved from a
database. One indicator of such “hidden” dependences is when
a static slice is strictly smaller than the corresponding ORBS
slice. Similar to ORBS, QSES is able to discover such hidden
dependences as illustrated in Section IV.

By its very nature a static slice is an over-approximation to
the (undecidable) true slice, while a dynamic slice is an under-
approximation to this slice. It is interesting to note that as the
input ORBS is given approaches the set of all-possible-inputs,
an ORBS slice approaches this slice from below. Investigations
such as that of Binkley et al. and the work presented here help
us probe and thus better understand the limits of both static and
dynamic dependence analysis. For example, past comparisons
between the slices of ORBS and CodeSurfer have a hard time
distinguishing code related to a slice being static from code
related to it being executable. QSES fills this void.

B. Combination of Static and Dynamic Slicing

Static and dynamic slicing have been combined before. Con-
ditioned slicing is a generalization of static and dynamic slic-
ing. Fox et al. present an approach to compute a conditioned
slice based on symbolic execution and theorem proving to first
generate a slice, which is then augmented with the information
from a static slice [22]. Our approach instead uses the static
slice during dynamic slicing. Gupta et al. present a hybrid
slicing approach that, instead of introducing static information
by protecting statements of a static slice, introduces dynamic
information from breakpoints, calls, and returns, during static
slicing, in order to augment the static slicing process [23].
Finally, rather than actually combining static and dynamic
slicing, Ashida et al. [24] present four approaches that combine
static and dynamic analyses for performing slicing, such as
combining a statically computed PDG with execution histories
to compute a slice.

VI. CONCLUSION

This paper introduces and studies Quasi-Static Executable
Slices. We provide an algorithm to compute such slices, based
on first identifying a static closure slice using CodeSurfer
before applying observation-based slicing (ORBS) to add in
code necessary to yield an executable program. The additions
include syntactic elements that are not modeled by CodeSurfer,
and statements that are required to preserve the semantics of
the program due to, for example, memory dependencies. Other
minor differences are related to artifacts of the dynamic slicing
approach used (e.g., the difference in granularity between
ORBS and CodeSurfer and the choice of the deletion window
size used by ORBS).

In the future, we plan a more detailed evaluation that will
further characterize the difference between QSES, QSES.,
and the original ORBS approach. We also plan to extend the
range of slicing criteria beyond scalar assignments, with slices
that involve pointers being an obvious place to start. Finally,
we will consider the implication QSES brings to the interplay
between static and dynamic dependence analysis.
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