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Abstract—One way to speed up static program analysis is to
make use of today’s multi-core CPUs by parallelising the analysis.
Existing work on parallel analysis usually targets traditional
data-flow analyses for static, first-order languages such as C.
Less attention has been given so far to the parallelisation of
more general analyses that can also target dynamic, higher-
order languages such as JavaScript. These are significantly
more challenging to parallelise, as dependencies between analysis
results are only discovered during the analysis itself. State-of-
the-art parallel analyses for such languages are therefore usually
limited, both in their applicability and performance gains.

In this work, we propose the parallelisation of modular
analyses. Modular analyses compute different parts of the anal-
ysis in isolation of one another, and therefore offer inherent
opportunities for parallelisation that have not been explored so
far. In addition, they can be used to develop a general class
of analysers for dynamic, higher-order languages. We present a
parallel variant of the worklist algorithm that is used to drive
such modular analyses. To further speed up its convergence, we
show how this algorithm can exploit the monotonicity of the
analysis. Existing modular analyses can be parallelised without
additional effort by instead employing this parallel worklist
algorithm. We demonstrate this for MODF, an inter-procedural
modular analysis, and for MODCONC, an inter-process modular
analysis. For MODCONC, we reveal an additional opportunity to
exploit even more parallelism in the analysis.

Our parallel worklist algorithm is implemented and integrated
into MAF, a framework for modular program analysis. Using
a set of Scheme benchmarks for MODF, we usually observe
speedups between 3× and 8× when using 4 workers, and
speedups between 8× and 32× when using 16 workers. For
MODCONC, we achieve a maximum speedup of 15×.

Index Terms—Static Program Analysis, Modular Analysis,
Parallelism, Concurrency, Dynamic Languages

I. INTRODUCTION

In order to be useful, static analyses require both good preci-
sion and performance. High precision can be achieved through
various techniques, such as increasing context-sensitivity [12],
[28], [29] or using a more precise abstract domain [5],
[30]. Unfortunately, such precision-increasing techniques often
come at the cost of increasing the complexity of the analysis,
therefore also impacting its performance. Consequently, a
combination of high precision and high performance is harder
to achieve, and the lack of performance is often mentioned as
one of the prime reasons why developers eschew the usage of
static analysers altogether [4], [14], [27].

An obvious approach to speed up the analysis is to exploit
today’s prevalence of multi-core CPU architectures and paral-
lelise the analysis. There is ample existing work on developing
such parallel analyses. However, most of the existing parallel
analysers target rather static languages such as C [2], [16],

[19], [22], [36]. An advantage when parallelising the analysis
for such languages is that the control-flow dependencies of
the analysed program are almost entirely known beforehand
(i.e., the inter-procedural call graph is available a priori).
For instance, the SATURN analyser [36] exploits these call
dependencies by parallelising a bottom-up analysis, in which
a function is only analysed after all its callees have been
analysed. Such a bottom-up analysis is almost trivially par-
allelisable: the analysis can start by analysing all functions
at the bottom of the call dependency graph (those without
any callees) in parallel, then analyse all subsequent functions
whose callees have already been analysed in parallel, and so
on1. Using this approach, the authors report speedups up to
almost 30× on an 80-core machine.

In contrast, less attention has been given so far to the parallel
analysis of highly dynamic, higher-order languages such as
JavaScript or Scheme. Parallelising an analysis for these
languages is more challenging, as the control-flow behaviour
of the program and dependencies between analysis results are
not known beforehand, and only discovered during the analysis
itself. Dewey et al. [9] parallelise JSAI, an abstract interpreter
for JavaScript, by exploring multiple independent program
states in the analysis in parallel. Compared to parallel analyses
for static languages, the speedups are more modest here: on
12 cores, most benchmarks achieve a 2 − 4× speedup. Fur-
thermore, as the exploration of program states is parallelised
by context, their approach is only able to parallelise context-
sensitive analyses, and its efficiency is very dependent upon
the impact of context-sensitivity for the analysed program.

In this work, we present a novel approach to automatically
parallelise a general class of analysers for highly dynamic,
higher-order languages. Specifically, we propose the paral-
lelisation of modular analyses. In a modular analysis [6],
a program is split up into different components (such as
the functions in the program), and those components are
repeatedly analysed in isolation. The key insight is that the
modularity of the analysis can be exploited to parallelise
the analysis: as the analysis of a single component is done
in isolation, multiple components can safely be analysed in
parallel. We consider a general and modern formulation of
modular analyses for highly dynamic and higher-order lan-
guages, which has recently been used for both traditional inter-
procedural analysis [23] (referred to as MODF) and for the
inter-process analysis of concurrent programs [31] (referred to

1Note that in such a bottom-up analysis, functions that are (mutually)
recursive form a strongly connected component (SCC) in the call graph, and
need to be analysed together in a single fixed-point computation.



as MODCONC). Although these analyses have been touted for
their applicability and scalability, so far no attention has been
given to their inherent opportunities for parallelisation. Note
that, compared to the bottom-up analysis of SATURN [36],
these analyses are not bottom-up, but rather top-down modular
analyses, as the control-flow dependencies of the program
are necessarily only discovered during the analysis itself due
to the language’s dynamic nature. Parallelisation for such
a top-down modular analysis proves to be less trivial. One
reason is that due to the lack of a priori information on
dependencies, it becomes harder to efficiently determine which
components need to be analysed in parallel. Another reason is
that such modular analyses are more general than the bottom-
up analyses of SATURN: components that are analysed in
parallel could lead to new dependencies or changes to the
global analysis state, requiring other components that may be
impacted by these changes to be re-analysed. We formulate
a new parallel worklist algorithm that can analyse multiple
components in parallel, while ensuring a correct coordination
of the analysis to obtain the exact same result as the traditional
sequential worklist algorithm. Since this worklist algorithm
is completely agnostic of the particular instantiation of the
modular analysis (e.g., MODF or MODCONC), one can apply
it to any existing modular analysis for free.

The contributions of this paper are the following:

• We propose the parallelisation of modular analyses to
easily and efficiently analyse dynamic, higher-order lan-
guages in parallel. A parallel worklist algorithm is given
to automatically render a modular analysis parallel.

• We apply our novel parallelisation strategy to two existing
modular analyses, MODF and MODCONC. In particular,
we demonstrate how the MODCONC analysis can be
made “doubly parallel” by analysing the MODCONC
components using a parallel MODF analysis.

• We implement our parallel worklist algorithm in MAF, a
framework to develop modular analyses. In our evaluation
on a set of Scheme benchmarks, most speedups range
between 8× and 32× when using 16 workers for MODF.
For MODCONC, we achieve speedups up to 15×.

II. BACKGROUND: MODULAR ANALYSIS

A modular static program analysis splits up a program
into several components. Ideally, this enables a “divide-and-
conquer” approach to program analysis: all components of a
given program are analysed in isolation of one another (using
an intra-component analysis), and the analysis results of the
different components are combined to obtain the analysis result
for the entire program. The exact definition of a component
can be chosen depending on the given program and the goal of
the analysis, and typically represents an abstraction of some
run-time entities in the program (such as function calls or
threads). For instance, in MODF, a component represents (an
approximation of) a function call, and the intra-component
analysis of a single component amounts to an intra-procedural
analysis of that function call.

However, the intra-component analyses of different compo-
nents may depend on one another. For instance, if components
are function calls, and component f1 is the caller of component
f2, then the return value of f2 needs to be known for
the intra-component analysis of f1. In turn, the argument
values that are supplied by f1 are necessary for the intra-
component analysis of f2. We say that component f1 has a
dependency on the return value of f2, while component f2
has a dependency on the argument values supplied by f1. To
deal with such mutual dependencies, we can employ a fixed-
point computation, as proposed by Cousot & Cousot [6]. This
fixed-point computation is referred to as the inter-component
analysis. It repeatedly analyses components (using the intra-
component analysis) with respect to the current analysis state.
This is necessary because the intra-component analysis of
some component c1 may update some part of the analysis
state that another component c2 has a dependency on. When
that happens, we say that a dependency of c2 is triggered, and
subsequently c2 is re-analysed using the updated analysis state.
The intra-component analysis must be monotone to ensure
that the analysis state eventually converges. The fixed-point
iteration is repeated until all components have been analysed
and the analysis state has converged (so that no dependencies
are triggered after analysing some component). Note that
for dynamic, higher-order languages, such as JavaScript and
Scheme, both components and dependencies are not know
beforehand and only discovered during the analysis itself.

A sequential algorithm for this inter-component analysis is
given in Algorithm 1. In this algorithm, we leave the definition
of components and the corresponding intra-component analy-
sis open as configurable parameters. Different choices for these
parameters lead to different instantiations of modular analyses,
such as MODF (Section II-A) and MODCONC (Section II-B).
The inter-component algorithm discussed here, however, is the
same for any of these modular analyses.

Algorithm 1: Sequential worklist algorithm computing
the fixed-point for the inter-component analysis.
Data: An initial component c0 and initial store σ0
Result: A sound, over-approximated analysis result for

the behaviour of the corresponding program
1 W = {c0}, V = {c0}, σ = σ0, D = λaddr. ∅
2 while W 6= ∅ do
3 pick any c ∈ W
4 W := W \ {c}
5 (σ′, C,R, T ) = ANALYSE(c, σ)
6 σ := σ′

7 W := W ∪ (C \ V )
8 V := V ∪ C
9 foreach a ∈ R do D := D[a 7→ D(a) ∪ {c}]

10 foreach a ∈ T do W := W ∪ D(a)

We assume that some initial component c0 represents the
entry point of the program. For instance, if components
represent function calls, then c0 would represent the initial call



to the main function of the program. The worklist algorithm
maintains the following iteration variables (line 1):
• A worklist W of components that still need to be anal-

ysed. Initially, this worklist only contains c0.
• A visited set V , which is used to keep track of all

components that have already been discovered during the
analysis, and initially also contains only c0.

• The global analysis state. For simplicity, we model this
using a store σ, although in general the global analysis
state can also encompass more than just a store. The
store σ models an approximation of the run-time heap
of the program. It maps abstract addresses (addresses
that approximate real heap addresses) to abstract values
(values that approximate real heap values). We assume
that an initial store σ0 (with initial bindings) is given.

• A dependency map D. Dependencies encode some part of
the global analysis state that an intra-component analysis
can depend on. In this case, the global analysis state is just
a store, and so dependencies are addresses of that store.
The dependency map D tracks for each dependency (i.e.,
address) a the set of all components that depend on the
value in the store at address a. This way, we immediately
know which components need to be re-analysed if a
dependency is triggered (which happens when the value
at that address in the store is changed).

The algorithm uses a sequential worklist iteration: as long
as the worklist is not empty (line 2), it arbitrarily picks (line 3)
and removes (line 4) a component c from the worklist. This
component is then analysed using the function ANALYSE,
which performs the intra-component analysis of component c
(line 5). As previously mentioned, this function is considered
a parameter of the analysis, returning a tuple (σ′, C,R, T ):
• σ′ is the updated store after the intra-component analysis

(note that the current store σ is also passed to ANAL-
YSE). After executing the intra-component analysis, we
continue the iteration with this updated store (line 6).

• C is the set of components that have been discovered
during the intra-component analysis. For instance, if
components represent function calls, then this is the set of
all components representing the function calls that were
made by the analysed function call component. We add
all unseen components to the worklist W (line 7), and
register these components in the visited set V (line 8).

• R is the set of dependencies that the analysis of this com-
ponent relied on. This corresponds to the set of addresses
in σ that were read by the intra-component analysis. For
every address a, we add the analysed component c to the
set of components reliant on that dependency2.

• T is the set of dependencies that the analysis of this com-
ponent triggered. This corresponds to the set of addresses
in σ that were written to by the intra-component analysis.
For every address a, we must re-analyse all potentially
impacted components, and hence add all components
reliant on a (i.e., D(a)) to the worklist (line 10).

2We write “f[x 7→ y]” as a shorthand for “λv. if v = x then y else f(v)”.

In order for the analysis to terminate, we must assume that
only a finite number of components can be discovered for a
given program. Usually, this is ensured by approximating the
actual run-time entities (e.g., function calls) by components
holding both the corresponding lexical program elements (e.g.,
function definitions), which are necessarily finite, plus some
contextual information (e.g., the call site of the function call)
taken from a finite set. This context is used to have multiple
components for the same lexical program element, and is
often referred to as the context-sensitivity of the analysis.
Context-sensitivity can be used to tune the precision of the
analysis: using more contextual information allows for more
components in the analysis so that each component may
be analysed with higher precision, whereas less contextual
information means that more run-time entities need to be
approximated by the same component.

Similarly, the store σ can only use a finite number of
addresses. Abstract values should be taken from a partially
ordered set (L,v) with a commutative and associative join
operator t, so that ∀a, b ∈ L : a v a t b. The choice
of L depends on the target analysis: an abstract value in
L can approximate a set of real values, or encode other
program properties (e.g., for a reaching definition analysis)
using any abstract lattice domain. The set L should satisfy the
ascending chain condition (ACC): every sequence of abstract
values l0 v l1 v l2 v ... should eventually converge: there
should exist some n so that ln = li for any i ≥ n. Values
at a certain address in the store are never overwritten, but
only joined with newer values at that address using the join
operator, so that the ACC guarantees that eventually all values
in the store will converge3, and no more dependencies will be
triggered. Furthermore, the intra-component analysis should
be monotone: the result of ANALYSE(c, σ2) should subsume
the result of ANALYSE(c, σ1) if σ1 v σ2

4. It can be shown
that these properties, combined with a finite number of com-
ponents, ensure that the analysis will always terminate with
the same result, regardless of the order in which components
are picked from the worklist. Nevertheless, the order in which
components are analysed can influence in what sequence the
abstract values in σ will converge and how many iterations are
required in the algorithm. In practice, it can therefore have a
significant impact on analysis performance.

A. MODF: Inter-Procedural Modular Analysis

One instantiation of this modular analysis framework is
MODF [23]. In MODF, a component represents a function
call (technically, an approximation of several function calls).
The intra-component analysis for a component in MODF then
boils down to an intra-procedural analysis of the function
call(s) represented by that component. The resulting inter-
component analysis for MODF, obtained by using this intra-
procedural analysis for the ANALYSE function in Algorithm 1,
can therefore be seen as an inter-procedural analysis.

3Our approach can trivially be extended to also support infinite ascending
chains with acceleration techniques such as widening to ensure convergence.

4We write “σ1 v σ2” if and only if “∀a : σ1(a) v σ2(a)”.



We do not formally define the ANALYSE function for MODF
here, as it is not relevant to the remainder of this paper. Rather,
we illustrate at a high-level how MODF works by example.

(define	(even?	n)
		(if	(=	n	0)
						#t
						(odd?	(-	n	1))))
(define	(odd?	n)
		(if	(=	n	0)
						#f
						(even?	(-	n	1))))
(define	(main)
		(even?	42))
		

main

even? odd?

Fig. 1. A MODF analysis example (left: the Scheme program under analysis;
right: the call graph computed by a context-insensitive MODF analysis).

Consider the snippet of Scheme code shown in Figure 1.
For this example, we employ a context-insensitive analysis:
this means that all calls to the same function are represented
by the same component. Since we only have 3 functions in this
program, that means our analysis will only discover 3 compo-
nents. Assuming that the main function is the entry point of
our program, the analysis will start with c0 = main. During
the intra-procedural analysis of this component (using the
function ANALYSE), the call to even? does not immediately
lead to an analysis of that function. Rather, even? is added
to the set of discovered components C returned by ANALYSE,
which is then added to the worklist W , and later analysed in
another iteration of the inter-component analysis. The return
value of this call is immediately looked up in the store σ at
an address dedicated to the latest return value of the even?
component. Due to the subsequent dependency on this address,
the main component will be re-analysed if (after analysing
even?) the return value of the even? component stored
at this address is updated. Similarly, the analysis of even?
will lead to the discovery of the odd? component. While the
analysis of the odd? component discovers a different call
to the even? function, due to the context-insensitivity that
call is also approximated by the already discovered even?
component. The resulting call graph that can be constructed
from this analysis is shown on the right-hand side of Figure 1.

B. MODCONC: Inter-Process Modular Analysis

Another instantiation of the modular analysis framework is
MODCONC [31], which can be used to analyse concurrent
programs that spawn multiple processes. In MODCONC, a
component represents a thread (technically, an approximation
of several threads). The intra-component analysis in MOD-
CONC then boils down to an intra-process analysis of the
thread(s) represented by a component. The resulting inter-
component analysis for MODCONC, obtained by using this
intra-process analysis for the ANALYSE function in Algo-
rithm 1, can therefore be seen as an inter-process analysis.

We again use an example to explain how MODCONC works
(Figure 2). Without additional context for components, the
analysis uses one component per fork expression in the

(define	(fib	n)
		(if	(<	n	2)
						n
						(let
								((f1
										(fork
											(fib	(-	n	1))))
									(f2
											(fib	(-	n	2))))
								(+	(join	f1)	f2))))
(define	(main)
		(fib	10))				

		

(fib
	(-	n	1))

main

Fig. 2. A MODCONC analysis example (left: the Scheme program under anal-
ysis; right: a graph computed by a context-insensitive MODCONC analysis,
showing how threads fork other threads in the program).

program, plus one component for the (implicit) main thread;
the latter is the initial component c0. Again, when a new thread
is forked in the fib function, this thread is not immediately
analysed; rather, a new component is created that is analysed
later using another intra-component analysis for that thread.
This thread will spawn new threads that are all approximated
by the same component, hence the self-loop in Figure 2.

While the intra-component analysis (i.e., the function
ANALYSE) for MODF could easily be carried out using a
simple intra-procedural analysis, it is less trivial to design the
intra-process analysis required by MODCONC. In general, the
behaviour of a single thread is as challenging to analyse as
the behaviour of any other single-threaded program, and there-
fore an intra-process analysis requires a full inter-procedural
analysis. We can repurpose MODF to carry out this inter-
procedural analysis, meaning that the intra-component analysis
in MODCONC can be defined using a MODF analysis.

As a final note, observe that MODF offers a full inter-
procedural analysis, given the definition of an intra-procedural
analysis. Similarly, MODCONC offers a full inter-process
analysis, given the definition of an intra-process analysis.
In general, for any definition of “component”, Algorithm 1
can be used to design an inter-component analysis, given a
definition of an intra-component analysis. This is one of the
main strengths of the modular analysis framework, as the
former is usually several times harder to design than the latter.

III. PARALLEL MODULAR ANALYSIS

Algorithm 1 shows how the inter-component analysis can
be computed using a sequential worklist algorithm. In this
section, we propose a novel parallel worklist algorithm to
compute the inter-component analysis, obtaining the exact
same result as the sequential worklist algorithm. The core
idea is simple: multiple components in the worklist W can
be analysed in parallel. A key benefit of the modular analysis
design is that it automatically provides coarse-grained tasks
(i.e., entire intra-component analyses) that can be run in
parallel because they are executed in isolation of one another.



We first present our core parallel worklist algorithm in
Section III-A. Then, we propose some optimisations that can
be applied to this algorithm to further increase its parallel
efficiency (Section III-B). Finally, we discuss its application
to MODF and MODCONC (Section III-C).

A. Parallel Inter-Component Analysis

Our parallel inter-component analysis algorithm uses several
worker threads to analyse multiple components in parallel. To
avoid synchronisation costs in updating the global analysis
state (i.e., σ in Algorithm 1), each component is analysed
using its own local copy of that analysis state. A single
thread is responsible for processing the incoming results of
the intra-component analyses and subsequently updating the
global analysis state. Therefore, our parallel worklist algorithm
follows the “coordinator-worker” paradigm, which can easily
be implemented using several concurrency mechanisms (e.g.,
using actors). Processing results using a single coordinator
thread introduces a sequential bottleneck, but trivially avoids
issues with race conditions. We expect throughput to be mostly
dominated by the cost of the intra-component analyses, which
can be processed in parallel using multiple workers.

Insights. There are two key insights that we leverage for
the parallel worklist algorithm.

First, when multiple intra-component analyses are executed
concurrently, it may occur that one updates some part of the
analysis state that the other depends on. Since state is kept
local to each worker during the intra-component analysis,
such updates happening in one intra-component analysis are
not visible in another. Therefore, after each intra-component
analysis, it should be checked that no part of the analysis
state that was read during that intra-component analysis has
been updated in the meantime; if so, the component should be
analysed again. We do not require any additional bookkeeping
for this, as we can exploit the dependencies that the intra-
component analysis relied on (i.e., the set R returned by
the ANALYSE function) to check if another intra-component
analysis might have interfered in its computation.

Second, we can exploit the monotonicity of the analysis
when updating the analysis state. If an intra-component anal-
ysis updates some part of the analysis state, we can always
apply these changes to the global analysis state. Even if the
local analysis state used during the intra-component analysis
is no longer up-to-date (i.e., not using the latest σ), it would be
subsumed by the newer state (because σ only “grows”), and
the monotonicity of the intra-component analysis guarantees
that all observed updates would still be valid. Moreover,
because of the associative and commutative properties of the
join operator, we can apply those updates on a more up-to-
date version of the analysis state. Again, we do not require
any additional bookkeeping for this, as we can exploit the
dependencies that the intra-component analysis modified (i.e.,
the set T returned by the ANALYSE function) to track all
updates to the analysis state after an intra-component analysis.

Algorithm. Algorithm 2 shows a parallel variant of the
inter-component analysis.

Algorithm 2: Parallel worklist algorithm computing
the fixed-point for the inter-component analysis.
Data: An initial component c0 and initial store σ0
Result: A sound, over-approximated analysis result for

the behaviour of the corresponding program
1 S = {c0}, V = {c0}, σ = σ0, D = λaddr. ∅
2 function SCHEDULE(c):
3 fork
4 σlocal = σ
5 result = ANALYSE(c, σlocal)
6 send (c, σlocal, result) to coordinator
7 SCHEDULE(c0)
8 while S 6= ∅ do
9 wait for next result (c, σlocal, (σ′,C,R,T))

10 foreach c′ ∈ C do
11 if c′ 6∈ V then
12 V := V ∪ {c′}
13 S := S ∪ {c′}
14 SCHEDULE(c′)
15 foreach a ∈ R do D := D[a 7→ D(a) ∪ {c}]
16 foreach a ∈ T do
17 if σ′(a) 6v σ(a) then
18 σ := σ[a 7→ σ(a) t σ′(a)]
19 foreach c′ ∈ D(a) do
20 if c′ 6∈ S then
21 S := S ∪ {c′}
22 SCHEDULE(c′)
23 if ∃a ∈ R : σlocal(a) 6= σ(a) then
24 SCHEDULE(c)
25 else
26 S := S \ {c}

Similar to the sequential algorithm, it keeps track of a
visited set V , a store σ and a dependency map D (line 1).
However, there is no longer a worklist W : components that
need to be analysed are directly sent off to a worker. This
happens using the function SCHEDULE (lines 2-6): a new task
is forked (which we assume is eventually assigned to a worker
thread) that will analyse the given component (using the
ANALYSE function) and send back the result when finished5.
A set of components S keeps tracks of which components
have been scheduled using this function, ensuring that a single
component is never scheduled multiple times at once.

To kickstart the analysis, we schedule the initial component
c0 (line 7). The coordinator thread then enters a loop (lines 8-
26) which stops once all the scheduled components have been
analysed (i.e., when S is empty). In each iteration, it updates
the analysis state after receiving an incoming result of an intra-
component analysis of some component c (line 9).

Analogous to the sequential algorithm, it first schedules

5In an actual implementation, it is necessary to make σ a volatile
variable. The coordinator thread modifies σ, while worker threads only read
σ. It is not necessary for a worker to have the latest version of σ; the σlocal
variable is introduced to ensure only a single version of σ is read.



every discovered component that has not yet been visited6

(lines 10-14), then registers the dependencies of the component
that was analysed (line 15),

Updating the analysis state becomes more complicated for
the parallel algorithm: we cannot just replace σ with σ′ (as in
the sequential algorithm), since it is possible that σ has been
updated during the intra-component analysis of component
c (in which case σlocal 6= σ). Therefore, we need to apply
each update that happened during the intra-component analysis
(as indicated by T ) to the current analysis state σ. We first
check (line 17) for every updated address a, if the updated
value σ′(a) is already subsumed by the current value for that
address σ(a). If so, this means that another intra-component
analysis already updated σ(a) in a way that the current update
is already incorporated in the analysis state. Otherwise, we join
the current value σ(a) with the updated value σ′(a) (line 18).
Again, we cannot just replace σ(a) with σ′(a), since σ(a)
may have been updated, in which case both σ(a) 6v σ′(a) and
σ′(a) 6v σ(a). The monotonicity of the analysis combined
with the commutative and associative properties of the join
operator allow us to join both values. By performing updates
to the analysis state in this way, the parallel analysis can speed
up its convergence. Then, as in the sequential algorithm, we
also schedule all components that may have been affected by
the triggered dependency a (lines 19-22).

Finally, we must check if component c needs to be re-
analysed because some part of the analysis state it depends
on (as indicated by R) was updated. Concretely, we check if
any dependency a that was used during the intra-component
analysis has been updated in the meantime (line 23). If so, we
must re-analyse component c to take into account this updated
analysis state (line 24). If not, the analysis result of c has been
processed, meaning that we can remove it from S (line 26).

Discussion. The parallelism that can be exploited by this
algorithm will depend on the number of components that are
scheduled at the same time (i.e., based on the size of the set
S). The analysis behaviour is non-deterministic in the order in
which scheduled components are analysed, the order in which
concurrent intra-component analyses finish, and the order in
which their results are processed. This significantly influences
in what order and in how many iterations the analysis state
will converge; however, it has no impact on the final analysis
result, which is always the same as that of Algorithm 1.

B. Optimising for Parallel Efficiency

There are several optimisations that can be applied to
Algorithm 2 to further enhance its parallel efficiency.

Prioritising components. Although the order in which
scheduled components are analysed and subsequently pro-
cessed does not influence the final analysis result, it can affect
performance. If two components c1 and c2 are scheduled,
and c1 relies on some analysis state that c2 updates, then
analysing both c1 and c2 in parallel would result in having
to re-analyse c1. We can avoid such issues by prioritising

6Note that c′ 6∈ V implies c′ 6∈ S here.

which scheduled components need to be analysed first. Xie
et al. [36] analyse callees in parallel before their callers are
analysed, and other existing work [13] on parallel analysis
has also confirmed the importance of prioritised scheduling to
improve parallel efficiency. Similarly, we can design a heuristic
to prioritise components “at the bottom of the call graph” by
assigning a depth to each component. The initial component c0
has depth 0. Whenever a component is discovered (lines 12-
14 in Algorithm 2), it is given the depth of the component
that discovered it plus one. This does not perfectly calculate
the actual depth of each component; however, it makes the
heuristic inexpensive to compute, and ensures that in general,
a component will have a higher depth than its “ancestors". For
instance, in MODF this will generally give a called function
a higher depth than its caller (but may not do so for mutually
recursive functions, or if the component representing the callee
has already been discovered). The worker threads are then
configured to analyse components with a higher depth first.

Timestamped dependencies. In practice, checking if no
dependencies were changed by comparing abstract values in
the store (i.e., using the equality checks on line 23) could be
somewhat expensive, at least in this context where we want to
avoid a sequential bottleneck by reducing the workload of the
coordinator. A simple workaround is to assign a timestamp
to each dependency (initially zero for every dependency).
Whenever the analysis state is updated (line 18), we increase
the timestamp of the corresponding dependency. As such,
we can eliminate the expensive equality checks on abstract
values, instead replacing them with much cheaper equality
checks on the timestamps of the dependencies. Using such
timestamps for cheaper comparisons goes back to earlier work
on optimising the performance of static analysers [15], [28].

Filtering intra-component analysis results. Note that the
cost of processing the results is directly linked to the size of the
C, R and T sets returned by the ANALYSE function. We can
reduce the workload on the single-threaded coordinator further,
by first filtering these sets in the worker after computing the
intra-component analysis. Specifically, the worker can remove
all components in C which are already included in the visited
set V , since these are discarded anyway on line 11. Similarly,
it can filter the sets R and T to only include dependencies that
are not yet registered for the analysed component or where the
corresponding updates are not yet subsumed by the current
analysis state, respectively. Note that it would not be safe
to remove the corresponding if-checks in Algorithm 2: the
analysis state may have been updated after the filtering of the
results, but before they are processed. On the other hand, the
filtering itself is always safe due to the increasing nature of
the analysis (e.g., the set V only grows).

C. Application to MODF and MODCONC

Since the parallelisation targets the inter-component anal-
ysis, no additional effort is required to parallelise existing
modular analyses such as MODF and MODCONC: one only
needs to replace the sequential with the parallel worklist algo-
rithm. For MODF, this results in an inter-procedural analysis



in which multiple function calls are analysed in parallel. For
MODCONC, this results in an inter-process analysis in which
multiple processes are analysed in parallel.

However, for MODCONC, the modular analysis design
allows us to exploit even more parallelism, since the intra-
component analysis of a MODCONC analysis can be imple-
mented using a MODF analysis. By using a parallel MODF
analysis, both the inter- and intra-component analysis of
MODCONC can trivially be rendered parallel.

IV. EVALUATION

Our parallel worklist algorithm, including the optimisations
discussed in Section III-B, has been integrated into the MAF
framework [32], where it is made available as a Scala trait
that can directly be used with any existing modular analysis.
We setup our experiments (Section IV-A) using this imple-
mentation, and measure the speedups of the parallel version
of MODF (Section IV-B) and MODCONC (Section IV-C) over
their respective sequential implementations. In addition, we
have also verified the correctness of the parallel implemen-
tations by running the built-in soundness tests of MAF and
by verifying that analysis results are the same as those of the
sequential implementation for all benchmarks.

A. Setup

Execution environment. All experiments are conducted on
a server using a 4-socket AMD Opteron 6376 CPU. Each
socket contains 2 dies that consists of 8 physical cores (which
share cache memory) each, therefore allowing to run 64
threads simultaneously in total. The server uses Java 8 and
Scala 2.13.3; we configured the JVM with a fixed heap size
of 64GB. Each experiment was preceded by 10 warm-up runs
(with a total timeout of 1 minute), and reported results are
averaged over 20 measurements.

Benchmarks. We use a total of 22 Scheme benchmarks
from the built-in benchmark suite of MAF, 14 for MODF (cf.
Table I) and 8 for MODCONC7 (cf. Table II). In contrast
to some of the existing work on parallel analysis [9], our
approach is not dependent on the choice of context-sensitivity:
for MODF, we include 7 context-insensitive benchmarks, as
well as 7 context-sensitive ones (using 2-CFA [28]). Specif-
ically, we use a context-insensitive analysis for benchmarks
that would be too slow using a context-sensitive analysis,
and vice versa (with the exception of the sboyer bench-
mark, which we analyse both context-senstively and context-
insensitively). For MODCONC, we run all analyses with high
context-sensitivity (5-CFA), since otherwise they terminated
too quickly to produce relevant results. For all benchmarks, the
abstract values come from a constant propagation domain [5],
allowing the analysis to derive the type and, if possible, the
constant value of every expression in the program.

Sequential implementation. As advocated by Dewey et
al. [9], we report speedups relative to the sequential im-
plementation (which is not always the case for speedups

7The MODCONC benchmarks are written in an extended version of R5RS
Scheme that includes special forms and primitives to support concurrency.

TABLE I
AN OVERVIEW OF THE MODF BENCHMARKS. LOC INDICATES LINES OF

CODE (AS CALCULATED BY CLOC). A CHECKMARK (3) IN THE CS?
COLUMN MEANS THAT THE BENCHMARK WAS ANALYSED

CONTEXT-SENSITIVELY (USING 2-CFA). THE LAST COLUMN INDICATES
THE RUNNING TIME USING THE SEQUENTIAL MODF IMPLEMENTATION.

Benchmark LOC CS? Sequential
multiple-dwelling 402 7 42s

decompose 412 7 43s
prime-sum-pair 394 7 31s

eceval 774 7 2m9s
peval 497 7 1m58s
scheme 767 7 8m5s

sboyer-A 632 7 55s
graphs 384 3 2m13s
matrix 617 3 1m12s
nboyer 625 3 16s

sboyer-B 632 3 1m36s
browse 161 3 20m46s

compiler 466 3 17s
leval 334 3 16s

TABLE II
AN OVERVIEW OF THE MODCONC BENCHMARKS. LOC INDICATES LINES
OF CODE (AS CALCULATED BY CLOC). THE LAST COLUMN INDICATES THE

RUNNING TIME USING THE SEQUENTIAL MODCONC IMPLEMENTATION.

Benchmark LOC Sequential
actors 105 1m38s
crypt 163 8s
matmul 111 2m28s
minimax 96 4m44s
msort 38 18s
random 19 12s

stm 130 44s
sudoku 84 2s

reported in other related work [18], [21], [22], [34]). For a
fair comparison, this sequential implementation uses the same
heuristic on the depth of components (cf. Section III-B) to
pick components from the worklist. The total running time
of the sequential MODF and MODCONC implementations are
included in Table I and Table II, respectively.

B. ModF Experiments

The speedups of the parallel MODF implementation
for context-insensitive and context-sensitive benchmarks are
shown in Figure 3 and Figure 4, respectively. In both cases,
we observe rather consistent speedups up to 16 workers: using
4 workers, most benchmarks achieve a speedup between 3×
and 8×; using 16 workers, most benchmarks achieve a speedup
between 8× and 32×. When using more than 16 workers,
performance gains are mostly dependent on the benchmark
under analysis. In general, longer running benchmarks such
as scheme, browse and graphs can benefit more from
the additional parallelism, achieving high speedups of 217×,
101× and 41× for 64 workers, respectively. Other bench-
marks improve only slightly (or not at all) when increasing
the number of workers further. In particular, the nboyer
benchmark appears to slow down when too many workers
are added. One reason for this slowdown could be that the
sequential implementation only takes 16 seconds to analyse
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Fig. 3. Speedups for the context-insensitive MODF benchmarks.
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Fig. 4. Speedups for the context-sensitive MODF benchmarks.

this program; using 8 workers reduces this to less than 4
seconds, and it may not be possible to improve performance
further through parallelism. Adding more workers at that point
could lead to more overhead or a less favourable exploration
strategy. In general, we expect speedups to become limited or
even to deter for a larger number of workers: there is only a
single coordinator to process all incoming results, introducing
a sequential bottleneck that puts a limit on the maximum
performance we can achieve, regardless of how many workers
are used. However, most benchmarks seem to consistently
benefit from increasing the number of workers up to 64.

Interestingly, we observe many superlinear speedups. A
major factor contributing to this is the order in which compo-
nents are explored. Both the sequential and parallel imple-
mentations use the same heuristic to pick the next sched-
uled component to analyse. However, as already mentioned
in Section III-A, the exploration order is non-deterministic
for the parallel implementations: the rate at which workers
execute the intra-component analyses determines which com-
ponents are scheduled, analysed and processed first. While
this does not influence the analysis result, it does influence
the performance of the analysis (for better or worse), as it
determines how the analysis state converges. In addition, our
parallel algorithm exploits the monotonicity of the analysis to

speed up the convergence of the analysis state: every intra-
component analysis can update the analysis state, even if that
intra-component analysis was not using the latest analysis
state itself. The increased rate at which the analysis state
converges could in turn lead to fewer re-analyses of the same
component, reducing the total amount of work for the parallel
analysis. This indeed turns out to be the case for benchmarks
with very superlinear speedups. For instance, the scheme
benchmark performs 125997 intra-component analyses in total
using the sequential implementation, whereas on a sample run
of the parallel implementation with 8 workers, only 12576
intra-component analyses are required. This means that for
that benchmark, the intra-component analysis workload is
reduced by approximately a factor of 10, which, combined
with the parallelism of using 8 workers, explains why we are
able to achieve a 64× speedup. Our work confirms findings
reported in related work [2], [9], [10], [18] that often attributes
superlinear or unexpected speedups to the exploration order.

It should also be noted that the parallel implementation with
1 worker is not identical to the sequential implementation. The
former uses 2 threads in total for the analysis: 1 worker thread
to perform the intra-component analyses, and 1 thread for the
coordinator to process the intra-component analysis results.
The latter only uses a single thread that does both sequen-
tially. For this reason, we often already notice performance
improvements when using just a single worker.

C. ModConc Experiments

As discussed in Section III-C, MODCONC can exploit paral-
lelism at two levels: the inter-component analysis can be made
parallel using Algorithm 2, while the intra-component analysis
can be made parallel by using a parallel MODF analysis. In
Figure 5, for each benchmark we show a matrix reporting
the speedups relative to the sequential implementation for
a varying number of workers in both the intra- and the
inter-component analysis. The labels on top of each column
indicate the number of workers used for the MODCONC
inter-component analysis (henceforth referred to as parameter
n). The labels on the left side of each row indicate the
number of workers used per intra-component (MODF) analysis
(henceforth referred to as parameter m). Since every intra-
component analysis can use m workers, the total number of
workers that can run concurrently at any given time is m ∗ n.

The results highlight the need for this doubly-parallel
strategy: when only analysing MODCONC components in
parallel (i.e., keeping m = 1), we do not consistently achieve
the same high speedups as for MODF. Some benchmarks
(such as matmul, minimax and random) clearly benefit
from analysing multiple processes in parallel; others (such
as actor and crypt) fail to achieve large speedups when
using the same configuration, sometimes even slowing down
compared to the sequential implementation. One reason for
this behaviour could be linked to the heuristic that prioritises
components based on their depth. For MODF, such a heuristic
clearly has merits, since it ensures that callees are usually
scheduled with a higher priority than their callers (as advo-
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Fig. 5. Speedups for the MODCONC benchmarks, relative to the sequential
implementation. Horizontally (left-to-right), we increase the number of work-
ers for MODCONC inter-component analysis. Vertically (top-to-bottom), we
increase the number of workers per intra-component (MODF) analysis.

cated in related work [13], [36]). However, for MODCONC,
it is not immediately clear if prioritising a process over
the process that spawned it has the same benefits. Another
reason could be more technical in nature: every single intra-
component analysis in MODCONC is a parallel MODF anal-
ysis, which requires more overhead to setup, orchestrate and
tear down compared to the more lightweight, sequential MODF
implementation. Indeed, we notice that for most benchmarks,
the parallel MODCONC implementation with n = 1 and
m = 1 is slower than the sequential implementation. However,
we believe much of this technical overhead could be avoided
in a more optimised implementation.

Increasing the parallelism of the intra-component analysis
(i.e., increasing m) does seem to improve performance for
most benchmarks. In general, it is recommended to use a
combination of inter- and intra-component parallelism (i.e.,
choosing both m > 1 and n > 1), as this often appears to
deliver significant (and somewhat consistent) speedups over
the sequential implementation. It should be noted that the poor
results for the sudoku benchmark are most likely caused
by the fact that the analysis under sequential MODCONC
takes less than 2 seconds, therefore leaving little room for
improvement due to parallelisation. In contrast, longer-running
benchmarks such as matmul and minimax achieve more
significant speedups up to 7.7× and 15.1×, respectively.

D. Threats to Validity

We discuss potential threats to the validity of our empirical
findings below. In doing so, we follow the classification
recommended by Wohlin et al. [35].

A threat to external validity stems from our usage of small-
to medium-sized Scheme benchmarks. We argue that Scheme
is an excellent target language to analyse, as it is highly
dynamic in nature and features higher-order functions, two
characteristics that we want to support well in our parallel
analysis. We compensated for the smaller scale of the bench-
marks by increasing the context-sensitivity of the analysis and
selecting benchmarks of interesting complexity (such as pro-
grams that run an interpreter). The built-in benchmarks of the

MAF framework that we used for our experiments originate
from various sources, including the SICP handbook [1] and
other well-known benchmark suites8 for Scheme [11].

A threat to construct validity is linked to the non-
deterministic behaviour of the parallel analysis. Due to the
non-predictable rate at which workers analyse components,
different runs of the same parallel analysis can lead to different
exploration orders, and therefore to significant differences
in performance. We mitigate this threat by repeating every
analysis 20 times, and reporting the average of all results.

Finally, a threat to internal validity is also linked to this
non-deterministic exploration order, which is different to the
deterministic exploration order of the sequential implemen-
tation. We have tried to keep the exploration order of the
sequential implementation as close to that of the parallel
analysis by using the same heuristic to pick components from
the worklist. However, it is not possible to enforce the exact
same exploration order, which can cause some perturbations
in the results. Again, repeating our experiments several times
and averaging the results also helps to mitigate this problem.

V. FUTURE WORK

There are several potential improvements to our approach
that could be explored further. We discuss two of them below.

The first is related to the exploration heuristic. Our current
heuristic prioritises components in the worklist based on their
depth. The results hint that this may work well for function-
modular analyses such as MODF, but could potentially be
suboptimal for other modular analyses such as MODCONC.
The design space for such heuristics appears to be quite large,
since they can for instance also take into account the depen-
dencies of components in the modular analysis. Therefore, an
extensive study and evaluation might reveal better heuristics.

The second is related to the use of a single coordinator
thread that processes incoming analysis results. As discussed
earlier, this imposes a sequential bottleneck, potentially lim-
iting speedups when using a very high number of workers.
We believe there is opportunity for parallelism in processing
the analysis results, although this appears to be much harder
to parallelise efficiently. Despite this apparent bottleneck, our
approach still appears to scale well up to a high number
of workers. It may however be a reason for the suboptimal
speedups we can sometimes observe when using 64 workers.

VI. RELATED WORK

Our approach falls within the domain of modular analyses,
initially proposed by Cousot and Cousot [6]. In particular,
we apply our approach to function-modular analyses [23] and
process-modular analyses [31]. We now discuss the extensive
existing work on the parallelisation of static program analyses.

A. Parallelisation of Classical Dataflow Problems

Classical dataflow problems have been parallelised by Lee
and Ryder [18], achieving a speedup of 7.5× on 8 cores, and
by Kramer et al. [17], computing an ideal achievable speedup

8http://www.larcenists.org/Twobit/benchmarksAbout.html
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of up to 5.4×. These are applicable when the control-flow
graphs of the program under analysis are known in advance. In
this paper, we focus on a more general problem than classical
dataflow analysis, since control-flow graphs are not available
in advance and only computed during the analysis itself.

B. Parallelisation With a Static Call Graph

There have been many parallelisations of analysers for C
and Java programs. For these languages, the call and control-
flow graphs of the program under analysis are known statically,
which is not a requirement of our analysis.

C analysers. Monniaux [22] described the parallel im-
plementation of the Astrée static analyser [7], achieving a
speedup of around 2× on 5 cores. However, Cousot et al. [8]
observed that beyond 4 cores, “the cost of synchronisation out-
weigths the speedup of parallel execution” for Astrée. The
SATURN program analysis framework [36] achieved a high
parallelisation by performing bottom-up modular analysis,
with speedups of up to 29× on 80 cores. McPeak et al. [19]
presented a parallel and incremental interprocedural analysis
that divides the analysis in parallel work units, integrated
within the Coverity checker, achieving a speedup of up to
7× on 8 cores. Recently, Kim et al. [16] have revisited
Bourdoncle’s algorithm [3] with parallelisation, achieving a
speedup of up to 11× on 16 threads. Bourdoncle’s algorithm
determines an optimal exploration order from a predefined
dependency graph; in contrast, our worklist algorithm uses
a predefined exploration strategy, since the dependencies are
only discovered during the analysis itself. More closely related
to our approach, Albarghouthi et al. [2] parallelised a top-down
interprocedural modular analysis by relying on MapReduce-
style parallelism, achieving a speedup of up to 7.4× on 8
cores. This approach has similarities to ours: the map stage
analyses procedures in parallel, similar to our intra-component
analyses, and the reduce stage manages inter-procedural de-
pendencies, similar to our inter-component analysis.

Java analysers. Rodriguez and Lhoták [26] presented a
parallelisation of IFDS [25] based on actors, where each CFG
node is represented by an actor. This is a completely different
parallelisation strategy compared to ours, which parallelises
the analysis of different components. They achieved a speedup
of 6.1× on 8 cores. Edvinsson et al. [10] parallelised indepen-
dent nodes (e.g., independent control-flow branches or targets
with different context-sensitivities), achieving a speedup of
4.4× on 8 cores. Again, in our approach we do not require
control-flow and call graphs to be known before the analysis.

C. Parallelisation of the Analyses of Dynamic Languages

There has been little existing work on parallelising analyses
for dynamic languages, where dependencies may not be known
statically. An early effort by Weeks et al. [34] parallelised
an abstract interpreter for a parallel higher-order dynamic
language, by partitioning the state space of the analysis for
different workers. Similar to our approach, each worker uses
its own local state, which can be updated without synchronisa-
tion costs. They achieve a speedup of 9.4× on 16 threads [9].

More recently, Dewey et al. [9] parallelised an abstract
interpreter for JavaScript, by partitioning states per context.
The speedups they report range from 2× to 4× on 12 threads,
with a few outliers up to 37×. In contrast, our approach does
not need to partition components per context, and is therefore
also applicable to context-insensitive analyses.

D. Other Forms of Parallelisation
Besides the traditional parallelisation approaches that use

threads or actors, there have been attempts to parallelise static
analyses through other approaches such as GPU computing
and distributed systems. In contrast to these, our approach only
relies on thread-based parallelism on a single machine.

Mendez-Lojo et al. [21] implemented parallel inclusion-
based points-to analyses on GPUs [20], achieving a speedup of
up to 3× on 8 cores, and of 7× on a GPU. Similarly, Prabhu
et al. [24] implemented an algorithm for higher-order context-
insensitive analysis on GPUs, encoding the analysis data as
vectors and matrices. They achieved a speedup of up to 72×.

Venet and Brat [33] presented the first distributed static
analysis implementation, focused on detecting out-of-bounds
errors in embedded C programs. It relies on a relational
database to store the analysis data, achieving speedups up to
2.7× on 8 distributed CPUs. They identified communication
costs as the limiting factor for a distributed analysis, showing
that these costs become too high beyond 4 distributed CPUs.

VII. CONCLUSION

We have presented a novel approach to design parallel
analyses for dynamic, higher-order languages. The key insight
in our work is that modular analyses offer inherent oppor-
tunities for efficient parallelisation, which we exploit with a
parallel worklist algorithm that analyses different components
in parallel. Despite its non-deterministic behaviour, this algo-
rithm obtains the exact same result as the sequential worklist
algorithm, and is able to further exploit the monotonicity of the
analysis to speed up its convergence. We applied this parallel
worklist algorithm to two existing modular analyses: MODF, a
function-modular analysis, and MODCONC, a process-modular
analysis. For the latter, we reveal a further opportunity for par-
allelisation, resulting in a modular analysis with both a parallel
inter-component and a parallel intra-component analysis.

Our implementation in the MAF framework reveals signifi-
cant speedups. For MODF, using 16 workers usually delivers
speedups between 8× and 32×. For MODCONC, we observe
speedups up to 15×. As such, in general our parallelisation
strategy appears to achieve similar or better speedups com-
pared to existing parallel analyses. In addition, it does not
require the control-flow graph of the program under analysis
beforehand, and can therefore also be used for analyses that
target dynamic, higher-order languages. Finally, it is directly
applicable to existing modular analyses, both context-sensitive
and context-insensitive ones. To our knowledge, there is no
other existing work that features all these qualities.
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