
Compositional Information Flow Analysis for
WebAssembly Programs

Quentin Stiévenart, Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel, Belgium
{quentin.stievenart,coen.de.roover}@vub.be

Abstract—WebAssembly is a new W3C standard, providing a
portable target for compilation for various languages. All major
browsers can run WebAssembly programs, and its use extends
beyond the web: there is interest in compiling cross-platform
desktop applications, server applications, IoT and embedded
applications to WebAssembly because of the performance and
security guarantees it aims to provide. Indeed, WebAssembly
has been carefully designed with security in mind. In par-
ticular, WebAssembly applications are sandboxed from their
host environment. However, recent works have brought to light
several limitations that expose WebAssembly to traditional attack
vectors. Visitors of websites using WebAssembly have been
exposed to malicious code as a result.

In this paper, we propose an automated static program analysis
to address these security concerns. Our analysis is focused on
information flow and is compositional. For every WebAssembly
function, it first computes a summary that describes in a sound
manner where the information from its parameters and the
global program state can flow to. These summaries can then
be applied during the subsequent analysis of function calls.
Through a classical fixed-point formulation, one obtains an
approximation of the information flow in the WebAssembly
program. This results in the first compositional static analysis
for WebAssembly. On a set of 34 benchmark programs spanning
196kLOC of WebAssembly, we compute at least 64% of the
function summaries precisely in less than a minute in total.

Index Terms—Static program analysis, WebAssembly, security

I. INTRODUCTION

WebAssembly [31] “is a binary instruction format for a
stack-based virtual machine” [6], designed as a compila-
tion target for high-level languages. The specification of its
core has been a W3C standard since December 2019 [7].
WebAssembly was designed for the purpose of embedding
binaries in web applications, thereby enabling intensive com-
putations on the web. Current trends however show that the
usage of WebAssembly goes beyond web applications. It is
now used for cross-platform desktop applications, thanks to
its ability to easily incorporate functions that are provided by
the runtime. In particular, the WebAssembly System Interface
(WASI) [12] is an API that focuses on providing such func-
tions to WebAssembly applications, in order to deal with files
and networking. As long as the proper functions are provided,
WebAssembly can also be used for IoT backends [32] and for
embedded systems [55]. Finally various runtimes are being
developed for WebAssembly [1], [3]–[5], [51], [52].

WebAssembly is quickly gaining in popularity: a 2019
study [44] demonstrated that 1 in 600 websites among the

top 1 million Alexa websites rely on WebAssembly. However,
the same study revealed an alarming finding: in 2019, the
most common application of WebAssembly is to perform
cryptojacking, i.e., relying on the visitor’s computing resources
to mine cryptocurrencies without authorisation. Moreover,
despite being designed with security in mind, WebAssembly
applications are still vulnerable to several traditional security
attacks, on multiple execution platforms [37].

Consequently, there needs to be proper tool support for
preventing and identifying malicious usage of WebAssembly.
There has been some early work on improving the safety
and security of WebAssembly, e.g., through improved memory
safety [22], code protection mechanisms [59], and sandbox-
ing [28]. Also, dynamic analyses have been proposed for
detecting cryptojacking [16], [67] or for performing taint
tracking [25], [60]. However, not a single static analysis for
WebAssembly has been proposed so far.

In this paper, we aim to fill this void by providing the
foundations for a method of static analysis tailored to We-
bAssembly. A number of challenging problems need to be
overcome. First, traditional whole-program analyses may not
be used, as WebAssembly binaries are often libraries of which
the usage is not known statically. Second, static analysis of
binaries is challenging due to their low-level nature [41],
[54]. Finally, for the sake of applicability, the analysis of
WebAssembly binaries has to be fast and automated so it
can be incorporated by runtimes to identify potential security
problems before running the application under analysis.

To address these challenges, we turn to a compositional,
summary-based analysis method [20]. In such an analysis,
code segments are analysed in isolation from each other and
the analysis computes a summary of their individual behaviour.
Our analysis aligns code segments with WebAssembly func-
tions, and computes summaries that describe how information
flows across the execution of functions. We deliberately do
not model flow through the linear memory of WebAssembly
nor traps as part of the summaries, and we focus on explicit
information flows. We observe that, in practice, this does not
result in soundness issues on 34 benchmark programs.

This paper makes the following contributions:
• We present the first compositional static analysis for

WebAssembly, in the form of a static information flow
analysis. This analysis is compositional in nature, and de-
rives function summaries. These summaries approximate
the information flow within a function, and are used to

conduct an inter-procedural analysis in a compositional
manner.

• We demonstrate how a static analysis for WebAssembly
can benefit from the design of WebAssembly to statically
over-approximate indirect function calls.

• We implemented our analysis within a framework that
we will open source. We evaluated our analysis on 34
WebAssembly programs, totalling 196kLOC, which were
analysed in less than 2 minutes, with a precision of 64%.

II. MOTIVATION

In this section, we motivate the desiderata for any static
analysis of WebAssembly and highlight the peculiarities of
WebAssembly that distinguish it from other assembly lan-
guages in terms of static analysis support.

A. Analysis with Security Applications

Safety has been a focal point in the design of WebAssembly,
as mentioned in the documentation: “the design of WebAssem-
bly promotes safe programs by eliminating dangerous features
from its execution semantics” [8]. However, suitability as an
efficient compilation target for languages such as C and C++
has received equal consideration. A linear memory model [22]
is the key feature to which WebAssembly owes this suitability,
meaning that memory is represented as an array of bytes
that can be read from and written to without limitations.
To ensure safety, WebAssembly programs —and their linear
memory— are isolated from the host execution environment:
an incorrect manipulation of the linear memory cannot result
in arbitrary code being executed on the host execution environ-
ment. However, they are still prone to the usual vulnerabilities
such as buffer overflows within their own execution. Similarly,
although the isolation of the WebAssembly executable limits
the possibilities for remote code execution, it is feasible [40]
nonetheless through a combination of indirect function calls,
buffer overflow, and code executing functions such as Em-
scripten’s emscripten_run_script which can run arbi-
trary JavaScript code on the browser. Lehmann et al. [37] have
even demonstrated that WebAssembly binaries are vulnerable
to various attacks, and that this is the case on several execution
platforms.

B. Static Analysis of Binaries

To address the increasing security concerns, WebAssembly
refinements such as improved memory safety [22] and two-
way sandboxing [28] as well as code protection mecha-
nisms [59] have been proposed. The first dynamic analyses
for vulnerability detection have also been proposed, against
cryptojacking [67] and unwanted information flow [25], [60].
To this date, however, no automated static analysis has been
proposed to protect the browser or WebAssembly runtime from
executing malicious instructions.

WebAssembly is a binary instruction language by definition.
For the browser or runtime executing WebAssembly instruc-
tions, the original source code of the compiled program is
no longer available. On the one hand, this is unfortunate as

source code can often be analysed with higher precision as
it reflects developer intentions more directly. On the other
hand, analysing a smaller binary language comes with the
advantage that its semantics is often well-defined. The core
language specification of WebAssembly is not only a W3C
standard, but it has also been mechanically formalised [68].
Notably, the WebAssembly specification does not contain any
undefined behaviour.

Static data flow analysis of x86 binaries is notoriously
difficult, mostly due to the difficulty of constructing the re-
quired Control Flow Graph (CFG) in the presence of arbitrary
jump instructions. Several data flow analyses [23], [35], [45],
[54] dedicate a separate and complex analysis to this task,
or have to refine a pre-computed CFG during their own
analysis [14]. The design of WebAssembly alleviates this
challenge. Branching instructions unambiguously identify the
targets of their jumps, either as a single target (with the br
instruction), two targets (br_if), or a static list of targets
(br_table). Moreover, function calls —another form of
branching— come in two forms: the call i instruction calls
the function identified by index i (statically defined), while
the call_indirect t instruction calls the function of type
t, of which the index is at a location in a statically defined
table, given by the value on the top of the stack. Hence,
the call_indirect instruction is the only unknown in the
control flow of WebAssembly. By relying on type information,
the targets of an indirect call can be approximated, enabling
the construction of an approximate call graph before analysis.

C. Compositional Analysis

A WebAssembly module is defined as a set of functions,
some of which are exported and made available to the host
execution environment, some of which are imported and are
made available by the host execution environment to be called
from within the WebAssembly module. This bi-directional
interface enables replacing JavaScript libraries with more
efficient binaries, which is a prevalent practice as Musch et al.
found that 39% of the top 1 million Alexa websites that rely
on WebAssembly do so in the form of binary libraries [44].

Hence, any whole-program analysis would require knowing
how a WebAssembly module is used by the client code, and
needs to support analysing both client-side JavaScript code and
WebAssembly code. This would be a tremendous engineering
effort, and would potentially result in slow analyses, as whole-
program analyses are known to face scalability issues [30],
[72]. Instead, we argue that some form of compositional
analysis is required. In a compositional analysis, the approx-
imation of the semantics of an entire program is obtained
by composing the approximations of the semantics of the
program’s parts [20]. As a result, a compositional analysis
can not only analyse whole programs, but can also analyse
portions of programs from any entry point, which fits the
need for analysing libraries where an entry point is a function
call. Compositional analyses, and similar forms of modular
analyses, have been shown to scale well [17], [24], [27], [29],
[33], [43], [58], [71].

A summary-based compositional analysis approximates the
semantics of a program part through a summary. In our case,
the program parts that are analysed in isolation from each other
are the functions of the WebAssembly program under analysis.
The information maintained in the summary for a function
needs to be sufficiently precise to support the purpose of the
analysis. To enable determining unwanted information flow, a
function summary should at least provide an approximation
of what it returns in terms of its parameters and how it
modifies the global variables (i.e., registers). It may also
include information on how the linear memory is updated. As
an example, consider the following excerpt of a WebAssembly
module with one global variable. This is the definition of
a function that takes one argument and returns a value. It
first pushes the constant 1 on the value stack (line 3), then
pushes the value of local variable 0 (line 4), which is the first
parameter to the function. Finally, both values are added with
the binary operation add, which reads both values from the
stack and pushes the result on the stack (line 5). The top value
of the stack after the last instruction is the return value of the
function. Hence, this function returns the value of its parameter
incremented by one, and does not modify the global variable.

1 (type (func i32 -> i32))
2 (func (type 1) (local)
3 i32.const 1 ;; stack is: [1]
4 local.get 0 ;; stack is: [arg0, 1]
5 i32.add) ;; stack is: [arg0+1]

For this function, our summary-based compositional analysis
produces the summary ({parameter(0)}, {global(0)}). This
indicates that the return value (first element of the tuple)
contains information from the first parameter of the function,
and that the global variable after the execution of the function
only contains information from the global variable before the
execution. This summary holds regardless of the values of its
parameters, the values of the global variables, and the content
of the linear memory.

III. MINIWASM: A MINIMAL VERSION OF WEBASSEMBLY

For presentation purposes, we introduce MiniWasm as a
subset of WebAssembly that contains all defining features that
should be supported by a static analysis. Our implementation
is not limited to the MiniWasm subset, and supports the
full WebAssembly language except for traps. We refer to the
WebAssembly specification [7] and its mechanisation [68] for
a formal treatment of the full language. MiniWasm retains the
following defining features of WebAssembly:

• 32-bit integers.
• Instructions for structured control flow: blocks (block),

loops (loop), and structured conditional jumps (br_if).
• Instructions to manipulate the WebAssembly runtime: the

local variables (local.get, local.set), the global
variables (global.get, global.set), and the linear
memory (load, store).

• Instructions for direct and indirect function calls (call,
call_indirect).

• Instructions for unary and binary operations (unop and
binop).

• Imported functions that are left undefined.
• Function pointer indirection through a table.

A MiniWasm module is composed of a list of function types,
a set of functions, and a table that identifies function pointers.
Without loss of generality, MiniWasm does not contain the
following features of the WebAssembly specification:
• Other datatypes: WebAssembly supports 64-bit integers,

32-bit floats, 64-bit floats, as well as various operations
on these types.

• A WebAssembly module may declare the initial contents
of the memory as part of its definition. The contents
of the memory can then be modified, either during the
execution of a WebAssembly function, or by the host
environment. This is not included in MiniWasm, because
we do not know how the memory may be changed by
the host environment, and the results of a compositional
analysis need to be valid for any change to that memory.

• MiniWasm does not feature exceptional control flow
(traps) nor the return instruction.

• In WebAssembly, functions may have names: these are
easier to read than indices when referring to a function in
call instructions. Moreover, WebAssembly modules may
export functions, giving them a name, such that they can
be called from the host environment. MiniWasm does not
contain any name.

• MiniWasm only features conditional branching (br_if),
as other WebAssembly branching instructions (br,
br_table) can be rewritten as conditional branching.

• In contrast to the actual WebAssembly specification, the
linear memory of MiniWasm is a map from 32-bit integer
values to 32-bit integer values, and the store and load
operations do not have an extra parameter to specify
alignments, signedness, and pack size.

A. Syntax of MiniWasm

The syntax of MiniWasm is defined below.
module ::= (module type∗ func∗ table)

type ::= (type (func ft))

bt, ft ::= t∗ → t∗

t ::= i32

func ::= (func (type tidx))

| (func (type tidx) (local t∗) instr∗)

table ::= (table n∗)

instr ::= data | control

data ::= drop | t.const n | t.binop | t.unop

| local.get n | local.set n
| global.get n | global.set n
| load | store

control ::= block bt instr∗ end | loop bt instr∗ end

| call ft n | call_indirect ft | br_if l
n, l, tidx ::= a number

A MiniWasm module (definition module in the syntax)
contains:

• A sequence of function type declarations (type∗).
• A sequence of function declarations (func∗).
• A table (table) that is used to identify targets of indirect

function calls: the table is a sequence of function indices
that may be called upon a call_indirect instruction.

A function can either be an imported function, defined by
the host environment, or a function defined in the module. A
function has a type, which is declared by providing its index
tidx in the sequence of type declarations. A defined function
may have local variables, and consists of a sequence of
instructions. Local variables are not named but rather indexed,
and are composed of first the function’s parameters, followed
by the declared locals: a function with one parameter and
two local variables can access local variable 0 for accessing
its parameter, and local variables 1 and 2 for accessing
the declared local variables. Instructions can either be data
instructions, which are instructions that manipulate the stack
(drop, const), locals (local.get and local.set) or
globals (global.get and global.set). Or, they can be
control instructions, which influence the program’s control
flow. We leave binop and unop unspecified as our analysis
will not distinguish between operators. Blocks (block) and
functions are annotated with their types (respectively, bt and
ft). We denote by btin (resp. btout) the input arity (resp. output
arity) of a block type, and similarly for a function type. Blocks
act as delimiters inside functions, for identifying jump targets.
Below we illustrate MiniWasm through a few examples.

B. MiniWasm Examples

The following example demonstrates the use of structured
jump instructions. The br_if instruction is used to jump out
of a number of enclosing blocks, or to jump back the beginning
of a loop. Here, br_if 0 at line 9 will break out of the
current block (ranging from line 4 to line 12) if the top value
on the stack is non-zero. In general, br_if n breaks out of
the nth parent block, or to the beginning of a loop as we will
see in the next example.

1 (type (func i32 i32 -> i32))
2 (func (type 1) (local)
3 ;; this block leaves one value on the stack
4 block -> i32
5 local.get 0 ;; stack is [arg0]
6 local.get 1 ;; stack is [arg1, arg0]
7 ;; breaks out of the block
8 ;; if arg1 is non-zero
9 br_if 0

10 drop ;; stack is []
11 local.get 1 ;; stack is [arg1]
12 end)
13 ;; final stack is [arg1] if arg1 = 0
14 ;; otherwise it is [arg0]

The following example demonstrates the use of the loop
construct and of local variables. The function takes one
argument and produces one return value. To do so, it relies
on two extra local variables (declared on line 3). The local
variables are manipulated with instructions local.get and
local.set. The local variables of a function are in fact a
sequence formed by the parameters of the function followed

by the declared local variables, which are initialised to 0 upon
function entry. The behaviour of a break instruction in a loop
block is to jump to the beginning of the loop. In case the
end of the loop is reached without breaking, the loop ends
its execution. This means that in the following code, the loop
iterates while local1-1 is non-zero.

1 (type (func i32 -> i32))
2 (func (type 1)
3 (local i32 i32)
4 local.get 0 ;; stack is [arg0]
5 local.set 1 ;; stack is []
6 loop
7 local.get 2 ;; stack is [local2]
8 i32.const 1 ;; stack is [1, local2]
9 i32.add ;; stack is [local2+1]

10 local.set 2 ;; stack is []
11 local.get 1 ;; stack is [local1]
12 i32.const 1 ;; stack is [1, local1]
13 i32.sub ;; stack is [local1-1]
14 local.set 1 ;; local1 is set to local1-1
15 local.get 1 ;; stack is [local1]
16 br_if 1
17 end
18 local.get 2)

The final example illustrates direct and indirect function
calls. A direct function call is performed by placing the
arguments on the stack (lines 4 and 5), followed by issuing
the call instruction (line 8). The function called will be the
function that has the corresponding index: in this case, the
function with index 0 is called. Function indices are assigned
to each function by following the order in which they are
defined in the module: function 0 is the first function declared
in the module. The return value of the called function will
be on the top of the stack after the function call. Finally, the
control flow returns to the caller once the called function has
finished its execution. For indirect function calls, arguments
are also placed on the stack (lines 10 and 11). Then, an
index is placed on the stack (line 12) before performing
the call_indirect instruction (line 13). This index will
be looked up in the table (declared on line 14), and the
corresponding function will be called. In this case, index 0
is looked up in the table: it points to function 0, which is
therefore called. Note that the call_indirect instruction
provides the type of the function to be called.

1 (type (func i32 i32 -> i32))
2 (func (type 1) (local) ...) ;; function 0
3 (func (type 1) (local)
4 i32.const 0
5 i32.const 1
6 ;; calls fun. 0 with [0,1] as arguments
7 ;; results in 0+1
8 call 0
9 drop ;; stack is now empty

10 i32.const 10
11 i32.const 15
12 i32.const 0
13 call_indirect i32 i32 -> i32)
14 (table
15 0 ;; "pointer" to function 0
16 1) ;; "pointer" to function 1

C. Semantics of MiniWasm

This formalisation is inspired by the implementation of
the WebAssembly specification [9], which itself supports the
full WebAssembly language. A state of the execution of a
MiniWasm module consists of a stack of values (denoted V), a
stack of administrative instructions, called the administrative
stack (A), local variables (L), global variables (G), and the
linear memory (M). Accessing the value in linear memory M
at address v is denoted M [v], and updating the value at address
v1 with value v2 is denoted M [v1 7→ v2]. Administrative
instructions are either a plain MiniWasm instruction (plain), or
synthetic indications that a function is being invoked (invoke),
that a function call is being executed (frame), that a break has
happened (br), or labels that identify blocks and loops (label).
The linear memory is represented as a mapping from values to
values. Functions have a type (ft), a number of local variables
(n), and a body which is a sequence of instructions.

state ∈ State = VStack× AStack× Locals× Globals×Mem

L ∈ Locals = Value∗

G ∈ Globals = Value∗

v ∈ Value = I32, the set of 32-bit integers
V ∈ VStack = Value∗

A ∈ AStack = AInstr∗

M ∈ Mem = Value→ Value

ainstr ∈ AInstr ::= plain(instr)

| invoke(fun, fidx) | frame(n, F, V,A, fidx)

| br(n, V) | label(n, instr∗, V, A)

fun ::= (ft, n, instr∗)

fidx, n are integers

The execution of a MiniWasm module is performed by the
transition function defined in Figure 1. We use the following
notation for sequences: a∗ and A are sequences of a, a · A
prepends element a to the sequence A, A·A′ concatenates two
sequences, Ai is the ith element of a sequence, take(n,A)
keeps only the first n elements from a sequence, drop(n,A)
drops the first n elements from a sequence, and rev(A) is the
reverse of sequence A. A sequence of 0, of length n, can be
constructed by zeros(n).

Data Instructions. drop removes the top value from the
value stack. i32.const pushes a constant on the stack. For
unary and binary operations, we assume that the behaviour of
i32.unop (resp. i32.binop) is described by function unary
(resp. binary). Accessing and modifying locals and globals
is performed by accessing or updating the corresponding
sequence of values (L or G). Loading from and storing to
the linear memory is a matter of accessing or updating the
memory mapping M .

Blocks, Loops, and Breaks. The semantics for block and
loop instructions is to place a label on the administrative
stack, containing the body instructions to execute and the
number of values to keep from the stack when breaking
from the label. Breaking means jumping either out of the
nth parent block (hence the number of values kept on the
stack is the out arity of the block), or back to the beginning
of the nth parent loop (hence the number of values kept

on the stack is the in arity of the loop). The value stack
within the label only contains the required number of values to
execute the corresponding body. The notation plain(instr)∗ in
the transition rule means that all instructions of the sequence
instr∗ are wrapped in a plain instruction. In case the top value
of the stack is not 0, a br_if instruction results in a br
administrative instruction being pushed, with the same level
as requested by the br instruction. Otherwise, br_if is a
no-op.

Function Calls and Frames. A call instruction extracts
the body of the function called with the helper function func-
tion (which we assume has access to the function definitions of
the module), and marks the function call through the invoke
administrative instruction. In contrast, a call_indirect
instruction looks up the module table to extract the function
in the table of the module at the index given by the value
at the top of the stack. We assume function table-lookup
has access to the module table and returns the corresponding
function index. An invoke administrative instruction creates
a new frame. The locals of the frame are constructed by
first extracting the arguments to the function from the stack,
to which are appended the declared locals of the function,
which are initialised to 0. The body of the function is itself
wrapped in a label. In case all instructions in a frame have
been executed, the frame has finished its execution and it is
popped from the administrative stack. Otherwise, we continue
stepping within the frame.

Labels. When all instructions within a label have been
executed, the label can be removed. If a br administrative
instruction has to be executed within a label, and the break
level is 0, the current label is removed, the value stack is
updated, and the instructions that have to be executed are
placed on the administrative stack. For other break levels, the
current label is removed and the level of the break is decreased.
For any other instruction, an execution step is performed on
the state inside the label.

IV. INSTRUMENTATION FOR INFORMATION FLOW

We now instrument the semantics of MiniWasm to char-
acterise what has to be approximated by the static analysis
presented in this paper. We are interested in the flow of
information from function parameters and global variables to
return values of functions, and to the global variables after a
function execution. To this end, the instrumentation annotates
values in the state space with taint information:

ValueT = I32 × TaintMap

Taint information is a mapping from function indices to sets
of taint sources: either parameters, or global variables. The
bottom taint map ⊥ assigns no taint to all function indices.

TaintMap = (N→ P(Taint))

Taint ::= parameter(n) | global(n)
⊥ = λn.∅

For example, the value (1, [1 7→ {parameter(0)}, 2 7→
{parameter(0),parameter(1)}] means that the 32-bit integer

Data v · V, plain(drop) ·A,L,G,M → V,A,L,G,M

instructions V, plain(i32.const n) ·A,L,G,M → n · V,A,L,G,M
v2 · v1 · V, plain(i32.binop) ·A,L,G,M → binary(binop, v1, v2) · V,A,L,G,M

v · V, plain(i32.unop) ·A,L,G,M → unary(unop, v) · V,A,L,G,M
V, plain(local.get l) ·A,L,G,M → Ll · V,A,L,G,M

v · V, plain(local.set l) ·A,L,G,M → V,A,L0 · · ·Ll−1 · v · Ll+1 · · ·Ln, G,M

V, plain(global.get g) ·A,L,G,M → Gg · V,A,L,G,M
v · V, plain(global.set g) ·A,L,G,M → V,A,L,G0 · · ·Gg−1 · v ·Gg+1 · · ·Gn,M

v · V, plain(load) ·A,L,G,M →M [v] · V,A,L,G,M
v2 · v1 · V, plain(store) ·A,L,G,M → V,A,L,G,M [v1 7→ v2]

Blocks, V, plain(block bt instr∗ end) ·A,L,G,M → drop(btin, V), label(btout, ε, take(btin, V), plain(instr)∗) ·A,L,G,M
loops, V, plain(loop bt instr∗ end) ·A,L,G,M → drop(btin, V), label(btin, instr∗, take(btin, V), plain(instr)∗) ·A,L,G,M

and breaks 0 · V, plain(br_if n) ·A,L,G,M → V,A,L,G,M

v · V, plain(br_if n) ·A,L,G,M → ε, br(n, V) ·A,L,G,M if v 6= 0

Function V, plain(call ft fidx) ·A,L,G,M → V, invoke(function(fidx), fidx) ·A,L,G,M
calls v · V, plain(call_indirect ft) ·A,L,G,M → V, invoke(function(fidx), fidx) ·A,L,G,M where fidx = table-lookup(v)

and frames V, invoke((ft, n, instr∗), fidx) ·A,L,G,M → V, frame(ftout, L
′, ε, label(ftout, ε, ε, plain(instr)∗), fidx) ·A,L,G,M

where L′ = rev(take(ftin, V)) · zeros(n)
V, frame(n, _, V ′, ε, fidx) ·A,L,G,M → V ′ · V,A,L,G,M

V, frame(n,L′, V ′, A′, fidx) ·A,L,G,M → V, frame(n,L′′, V ′′, A′′, fidx) ·A,L,G′,M ′ if V ′, A′, L′, G,M → V ′′, A′′, L′′, G′,M ′

Labels V, label(_, _, V ′, ε) ·A,L,G,M → V ′ · V,A,L,G,M
V, label(n, instr∗, _, br(0, V ′ · _)) ·A,L,G,M → take(n, V ′) · V, plain(instr)∗ ·A,L,G,M

V, label(n, _, _, br(n, V ′) · _) ·A,L,G,M → V, br(n− 1, V ′) ·A,L,G,M
V, label(n, instr∗, V ′, A′) ·A,L,G,M → V, label(n, instr∗, V ′′, A′′) ·A,L′, G′,M ′ if V ′, A′, L,G,M → V ′′, A′′, L′, G′,M ′

Fig. 1. Semantics of MiniWasm. spaced according to the corresponding paragraphs in Section III-C.

value 1 has been computed in a way that is influenced
by the first parameter of function 1 and by the first and
second parameters of function 2: information flows from
each of these parameters to this value. We only deal with
explicit information flow in the present paper, which is in
line with current research [49], [56], [57]. Taint maps are
joined componentwise, e.g., [1 7→ {parameter(0)}] t [1 7→
{parameter(1)} = [1 7→ {parameter(0),parameter(1)}].

A summary represents how information flows from pa-
rameters and global variables to the optional return value of
a function (represented as a sequence of length 0 or 1, in
the domain P(Taint)∗), and to the global variables after the
execution of the function (in the domain P(Taint)∗). This is
therefore represented as a tuple of which the first element
is the taint of the optional return value, and the second
element the taint of the global variables. The instrumented
semantics computes a set of summaries S. In order to construct
a summary for a function with index fidx, helper function
summary extracts from the instrumented information of the
optional return value (tr) the taint from the point of view
of the current function (tr[fidx]), and similarly for the global
variables after the function execution.

Summary = P(Taint)∗ × P(Taint)∗

S ∈ Summaries = P(Summary)

summary(fidx, (_, tr)∗, (_, tg)∗) = (tr[fidx]∗, tg [fidx]∗)

The instrumentation of helper functions is given below. Unary
and binary operations propagate the information from their pa-
rameters to their result. Function zerosT provides a sequence
of zeros with no taint. Function taint-params (resp. taint-
globals) marks parameters (resp. global variables) with their
taint.

unaryT (unop, (v, t)) = (unary(unop, v), t)

binaryT (binop, (v1, t1), (v2, t2)) = (binary(binop, v1, v2), t1 t t2)
zerosT (0) = ε

zerosT (n) = (0,⊥) · zerosT (n− 1)

taint-params(fidx, ε, n) = ε

taint-params(fidx, (v, t) · V, n) = (v, t t [fidx 7→ {parameter(n)}])
· taint-params(fidx, V, n+ 1)

taint-globals(fidx, ε, n) = ε

taint-globals(fidx, (v, t) ·G,n) = (v, t t [fidx 7→ {global(n)}])
· taint-globals(fidx, G, n+ 1)

Finally, the instrumentation of the semantics of MiniWasm is
given in Figure 2, where the instrumentation is highlighted in
grey. Only the non-trivial cases are given. The states are ex-
tended with a set of summaries produced, S. The i32.const
instruction pushes a new value that has no taint. Unary (resp.
binary) operations propagate information flow according to
the unaryT (resp. binaryT) helper functions. Upon a function
invocation, the parameters and global variables are marked
with the appropriate taint, while other values have no taint.

Upon a function return, the summary of the corresponding
function call is added to the set of summaries.

With this instrumented semantics, the execution of a module
produces a set of summaries, where each summary corre-
sponds to information flow for one function execution.

V. COMPOSITIONAL INFORMATION FLOW ANALYSIS

We now turn to the static approximation of information
flow function summaries. As motivated in Section II, the
static analysis is compositional: one function is analysed at
a time, independently of its callers. Once a function summary
has been inferred, it can subsequently be used to produce
summaries for the callers of a function.

A. Control Flow Graphs

The information flow analysis we describe here is expressed
as a data flow analysis on a control flow graph (CFG). A CFG
is a set of basic blocks connected by edges, with a single
entry block and a single exit block. Each MiniWasm basic
block either contains one control instruction, or is a sequence
of data instructions. Jumps occur from control instructions to
the start of another block. The CFG of a MiniWasm function
can be constructed using the traditional CFG construction
approach [10]. Unlike analyses for other binary instruction
formats [14], [23], [35], [45], [54], analyses for WebAssembly
do not require approximating control flow jumps: the target of
jump instructions (br, br_if, br_table) is always explicit.

B. Runtime Structure Inference

The information flow analysis relies on the ability to identify
and name elements of the stack, locals, and globals. To that
end, the analysis performs a first pass over the CFG to infer
the shape of the stack and to assign a unique name for each
stack location, local variable and global variable. After this
inference phase, the size of the value stack before and after
each instruction is known precisely. The following example
is annotated with the inferred names for the stack, the locals,
and the globals.

1 (type (func i32 -> i32))
2 (func (type 1) (local i32)
3 ;; stack: [], locals: [p0,l0], globals: [g0]
4 i32.const 1
5 ;; stack: [i0], locals: [p0,l0], globals: [g0]
6 local.get 0
7 ;; stack: [i1,i0], locals: [p0,l0], globals: [g0]
8 i32.add)
9 ;; stack: [i2], locals: [p0,l0], globals: [g0]

This analysis phase is performed as a walk through the CFG.
For each instruction, we statically know how it modifies the
stack. For example, the i32.const 1 instruction pushes a
new value on the stack, hence a new name (i0) is created for
that new stack location. The process is similar for instructions
manipulating local and global variables, e.g., local.set
updates a local variable, which is therefore assigned a new
name. Special care needs to be taken upon merge points in the
CFG: names that may differ have to be replaced. To do so,
we extend the CFG with an extra merge node at every merge
of the control flow. In this merge node, all names are replaced

by fresh names. For example, if two nodes are connected to a
merge node, where the top value of the stack has name x in
one node, and name y in the other node, the top of the stack at
the merge node will be z, and the analysis has to account that
z results from joining x and y. This is similar to the use of
φ-nodes in compilers [50]. It is up to the analysis to correctly
deal with these names.

C. Information Flow Analysis

The information flow analysis computes, before and after
each instruction, a map of names to the information that they
may contain, represented as a set of Taint.

S ∈ State = Name→ P(Taint)

The initial state of the analysis for a function that has n
parameters, in a module that has m global variables, is the
following, where all parameters and globals are assigned their
own taint. We assume pi (resp. gi) is the name corresponding
to the ith parameter (resp. global variable).

S0 = [p0 7→ {parameter(0)}, . . . pn 7→ {parameter(n)},
g0 7→ {global(0)} . . . gm 7→ {global(m)}]

The analysis is then described as a state transformer for each
instruction: JinstrK(S, V, L,G, V ′, L′, G′), defined in Figure 3.
This state transformer computes the state after the instruction,
given the state before the instruction (S), and using infor-
mation from the runtime structure inference phase, namely
the names of the value stack, locals, and globals before the
instruction (V , L, and G), as well as after the instruction (V ′,
L′, and G′).

Instructions like drop and i32.const do not propagate
any information. Unary and binary operations propagate infor-
mation from their parameters to the resulting value. Instruc-
tions to manipulate locals and globals propagate information
as follows. After getting the value of a local (resp. global) with
local.get (resp. global.get), the top value of the stack
is tainted with the taint from the local (resp. global). Modifying
the value of a local (resp. global) with local.set (resp.
global.set) propagates the information from the value set
to the resulting local (resp. global).

For a store instruction, information is propagated from
the stored value to the special name mem, which indicates
that information may flow anywhere in the memory. This is a
deliberately sound but coarse modelling of the memory, which
cannot be refined without a precise modelling of numerical
values. We leave such refinements for future work. For a load
instruction, information is propagated from the special name
mem to the resulting value.

For a call n instruction, the function that is called is
known precisely: it is the nth function of the module. The
information is propagated according to the information flow
summary of that function, which we will describe shortly.
For a call_indirect t instruction, the called function
is not known precisely, because the analysis does not derive
any numerical properties, and the function called depends on
the top value of the stack. However, the type t of the called

V, plain(i32.const n) · as, L,G,M, S → (n, ⊥) · V, as, L,G,M, S

v2 · v1 · V, plain(i32.binop) · as, L,G,M, S → binaryT (binop, v1, v2) · V, as, L,G,M, S

v · V, plain(i32.unop) · as, L,G,M, S → unaryT (unop, v) · V, as, L,G,M, S

V, invoke((ft, n, instr∗), fidx) · as, L,G,M, S → V, frame(ftout, L
′, ε, label(ftout, ε, ε, plain(instr)∗), fidx) · as, L, G′ ,M, S

where L′ = taint-params(fidx, rev(take(ftin, V), 0)) · zerosT (n)

G′ = taint-globals(fidx, G, 0)

V, frame(n, _, V ′, ε, fidx) · as, L,G,M, S → V ′ · V, as, L,G,M, {summary(fidx, V ′, G)} ∪ S

Fig. 2. Instrumented semantics of MiniWasm.

JdropK(S, V, L,G, V ′, L′, G′) = S

Ji32.constK(S, V, L,G, V ′, L′, G′) = S

Ji32.binopK(S, v2 · v1 · V, L,G, v′ · V ′, L,G) = S[v′ : S[v1] t S[v2]]
Ji32.unopK(S, v · V, L,G, v′ · V ′, L′, G′) = S[v′ : S[v]]

Jlocal.get nK(S, V, L,G, v′ · V ′, L′, G′) = S[v′ : S[Ln]]

Jlocal.set nK(S, v · V, L,G, V ′, L′, G′) = S[L′n : S[v]]

Jglobal.get nK(S, V, L,G, v′ · V ′, L′, G′) = S[v′ : S[Gn]]

Jglobal.set nK(S, v · V, L,G, V ′, L′, G′) = S[G′n : S[v]]

JstoreK(S, v2 · v1 · V, L,G, V ′, L′, G′) = S[mem : S[v1]]

JloadK(S, V, L,G, v′ · V ′, L′, G′) = S[v′ : S[mem]]

Jcall nK(S, V, L,G, V ′, L′, G′) = apply-summary(n, S, rev(take(ftin, V)), G, vs’, G′)

Jcall_indirect tK(S, v · V, L,G, V ′, L′, G′) =
⊔

n∈matching-funs(t)

apply-summary(n, S, rev(take(ftin, V)), G, V ′, G′)

Fig. 3. State transformer for information flow analysis.

function is known. Hence, we know that a function that is
the target of the call has to have a matching type, and has
to be declared in the table of the module. We can therefore
statically compute a set of functions that may be called,
which is what we assume matching-funs : Type → P(N)
does, returning a set of function indices. Then, each of these
functions’ summaries are applied, joining the results together.

D. Information Flow Summaries

An information flow summary describes how information
propagates from a function’s parameters and globals to its
optional return value and to the globals after its execution. We
present these summaries formally, for the case where there is
exactly one return value. The general case is similar. Auxiliary
helper function mk-summary constructs a summary from the
state S of the information flow analysis at the end of the
function, where v is the name of the top of the stack, and
G are the names of the global variables at the end of the
function execution. The bottom summary ⊥ maps the return
value and each global to the empty set.

Summary = P(Taint)× P(Taint)∗

mk-summary(S, v,G) = (S[v], S[G1] · · ·S[Gm])

⊥ = (∅,∅ · · ·∅)

Function apply-summary applies a summary by first con-
structing a substitution σ, that will replace occurrences of
parameters and globals in a set of taints by their taint before
the call. Then, it sets the taint of the return value v′ to the
taint given by the summary after substitution, and similarly
for all global variables. The summary itself is extracted by

lookup-summary, which provides the summary for function
n.

apply-summary(n, S, V,G, v′ · V ′, G′)
= S[v′ 7→ σ(r), G′0 7→ σ(G′′0), . . . , G

′
m 7→ σ(G′′m)]

where (r,G′′) = lookup-summary(n)

σ(X) =
⊔

parameter(i)∈X
S[Vi] t

⊔
global(i)∈X

S[Gi]

E. Intra-Procedural Analysis

The state transformer presented in Figure 3 can be computed
for all instructions of a function, following the traditional
dataflow analysis approach [47]. The only special case to take
into account is to handle merge nodes of the CFG, which
were introduced by the runtime structure inference. For our
taint analysis, in case of a merge node that merges a variable
x with a variable y into a variable z, the taint of z is S[x]tS[y].

F. Bottom-Up Inter-Procedural Analysis

We now have described a compositional analysis for Mini-
Wasm functions. The main remaining question is: how do we
know the summary to apply upon a function call? This is
solved by performing a bottom-up inter-procedural analysis.

Computing the call graph. First, a call graph has to be
computed for the WebAssembly module. Because all function
call targets are either statically known in the case of the call
instruction, or can be approximated by their type and the con-
tent of the module table in the case of the call_indirect
instruction, we can derive an approximate call graph.

Computing the analysis schedule. From this approximate
call graph, we apply Tarjan’s algorithm [62] to compute the

strongly-connected components (SCCs) of the call graph, in
topological order. The order of the SCCs gives us an analysis
schedule: an SCC x precedes SCC y in this sequence if a
function from y may call a function from x, hence x has to
be analysed before y so that its summary is available during
the analysis of y.

Analysing an SCC. The analysis of the entire module is
therefore decomposed into the analysis of a set of functions
that form an SCC. Each function of the SCC can then be
analysed by the compositional analysis. A function call within
an SCC either calls a function that has been fully analysed,
as part of a previous SCC, or calls a function within the same
SCC. In the first case, the summary of the called function is
fully known and can be used. In the second case, the summary
is unknown and we rely on the bottom summary. When one
function of the SCC has been analysed, its callers that are
within the same SCC are scheduled for (re-)analysis, as they
can now rely on a more complete summary. This proceeds in
a fixed-point fashion, until all summaries have reached their
fixed point, and the analysis can proceed with the next SCC.

Handling Imported Functions. A MiniWasm module can
have functions that are not defined, but that rather are im-
ported. In WebAssembly, such functions usually stem from
WASI. For each imported function, we manually encode an in-
formation flow summary. For example, WASI’s proc_exit
function takes an argument and terminates the execution of
the program. Hence, its summary is the bottom summary: it
does not propagate any information.

G. Soundiness of Summaries

A summary does not retain information about how informa-
tion flows within the memory during the function execution.
This is a deliberate choice that breaks the soundness of the
analysis at the benefit of precision. This similar to what the
soundiness manifesto advocates [39]. As we shall see in our
evaluation, we did not encounter any unsound result despite
this choice: WebAssembly functions do not seem to store
values that are coming from memory in the global variables,
nor to return such values. It would be possible to retain this
information by preserving the information from the special
name mem in the summary, and propagate it upon application.
This may cause a precision loss though: any function that
stores one of its arguments in memory taints the entire memory
with the information from its argument. Subsequent loads
in this function would be tainted with that information. We
envision that retaining information about numerical values
would allow a more precise modelling of the store, and hence
more precise summaries even when the store is included.

VI. EVALUATION

We have implemented the information flow analysis pre-
sented here in around 3000 LOC of OCaml code.1 Our
implementation is not limited to MiniWasm, but supports the
complete WebAssembly standard. To assess the precision of

1Available at: https://github.com/acieroid/wassail/releases/tag/scam2020

the results of the analysis, we also instrumented the concrete
interpreter that accompanies the WebAssembly specification
[9], following our instrumentation presented in Section IV.

We have run our analysis on 34 C programs, coming from
two benchmark sources: the first 30 are the entirety of the
PolyBench benchmarks [48] which implement arithmetic ker-
nels, and all feature indirect function calls. The remaining 4 are
selected from the Language Benchmark Game [26], which aim
at evaluating performance of programming languages, and do
not require complex language features such as parallelism, nor
indirect function calls. Both have been used in the evaluation
of program analyses [15], [19], [46], [53]. We compiled each
program to WebAssembly using clang 10.0.1, and linked
with a libc implementation built on top of WASI [2]. We
used a laptop with an Intel i7-8650U CPU, with 32GB of
RAM, with OCaml 4.10.0.

TABLE I
BENCHMARK PROGRAMS, ANALYSIS TIME (IN SECONDS) AND PRECISION

OF RESULTING SUMMARIES (PREC.).

Program LOC Time Prec. Program LOC Time Prec.

2mm 6815 2.09 6/9 heat-3d 5935 1.47 4/8
3mm 6906 2.09 6/9 jacobi-1d 5708 1.44 4/8
adi 6002 1.48 4/8 jacobi-2d 5811 1.46 4/8
atax 6777 2.07 7/10 lu 6164 1.53 5/9
bicg 6779 2.05 7/10 ludcmp 7202 2.18 7/10
cholesky 6142 1.52 5/9 mvt 6663 2.04 6/9
correlation 6769 2.07 6/9 nussinov 6809 2.11 6/10
covariance 6672 2.07 6/9 seidel-2d 5756 1.42 4/8
deriche 6052 1.52 4/8 symm 6771 2.04 6/9
doitgen 6681 1.97 6/9 syr2k 6696 2.02 6/9
durbin 5762 1.51 4/8 syrk 6642 2.02 6/9
fdtd-2d 6760 1.99 6/9 trisolv 6590 2.10 6/9
floyd-warshall 5760 1.38 4/8 trmm 6649 2.03 6/9
gemm 6685 2.07 6/9 fankuchredux 439 0.08 4/4
gemver 6778 2.05 6/9 mandelbrot 945 0.07 2/2
gesummv 6632 2.00 6/9 nbody 295 0.03 2/2
gramschmidt 6889 2.10 6/9 spectral-norm 221 0.06 3/3

To measure precision, we ran both the static analysis and
the instrumented concrete interpreter (i.e., a dynamic analysis)
in order to generate static and dynamic information flow
summaries respectively. For each function, we evaluate the
precision of the summary Ss produced by the static analysis
as follows. First, we join all dynamic summaries Sd1

, . . . , Sdn

produced for that function (each dynamic summary correspond
to one function execution), resulting in Sd. In case no summary
has been produced by the dynamic analysis, this means that
the function was not reached by the dynamic analysis. We
therefore cannot assess the precision of the static analysis for
that function, and we ignore these functions in our evaluation.
For functions that have dynamic summaries, we have one of
the following situations:
• Sd = Ss, in which case the static analysis is fully precise.
• Ss misses information from Sd, in which case the static

analysis has produced an unsound result (i.e., a false
negative). This did not happen in our evaluation, even
though summaries are soundy [39] as they do not model
the taint of the linear memory.

• Ss includes more information than Sd, e.g., Ss =
({parameter(0)}, ε) (the return value contains information

https://github.com/acieroid/wassail/releases/tag/scam2020

from its first parameter) and Sd = (∅, ε) (the return value
does not contain any information from its parameters). This
means that the static analysis may have produced imprecise
results for that function (i.e., a false positive). We therefore
count this as an imprecise summary. In practice, however,
it can be that some paths within a function that are not
reached by the dynamic analysis, are taken into account by
the static analysis. In this case, even though the summary
derived by the static analysis may be fully precise, it will
not be reported as so. Hence, the precision reported here
is a lower bound on the actual precision of the analysis.

Computing this for all functions of a module gives us a
ratio, e.g., 6/9 for the 2mm program, indicating that the
static analysis computed 6 static summaries that are fully
precise and are true positives, and 3 that are potentially false
positives. This evaluation method is similar to how other
taint analysers are evaluated [49], with the difference that we
measure precision on function summaries rather than solely
on unwanted information flows.

Table I lists the benchmark programs along with the time
taken to analyse them, and our measure of precision. In total,
196157 LOCs are analysed in 56.13 seconds, with a precision
lower bound of 64% for the resulting summaries. The analysis
running time is low: each benchmarks is analysed within 2
seconds, and on average 3495 LOC are analysed per second,
with peaks up to 13500 LOC/s for shorter benchmarks like
mandelbrot. The total precision is of 64%, which is in
line with other static taint analysis tools [49], [64]. We notice
however that the precision varies depending on the benchmark
suite: it is of 100% on programs from the Language Bench-
mark Game, and of 62% on programs from the PolyBench
benchmark suite. A closer look at the results for the PolyBench
benchmark suite shows that many of the programs share
common functions, some of which are analysed imprecisely,
which propagates to all analysis results.

VII. RELATED WORK

A. WebAssembly

Even though WebAssembly is a recent standard, there has
been some work focusing on its analysis and verification.
Lehmann et al. [38] present a dynamic analysis framework
for WebAssembly. Instead of instrumenting a WebAssembly
interpreter (Section IV), one could instrument WebAssembly
programs with Wasabi to compute the same information.
Watt et al. [69] propose a separation logic for WebAssembly,
enabling manual verification of functions and modules. Our
approach derives less expressive properties, but in a fully
automated way. Another existing approach, taken by CT-
Wasm, is to provide a rich type system for WebAssembly [70].

B. Summary-Based Analyses

Summary-based analyses have been used on numerous
occasions to achieve scalable static analyses, as an alternative
to whole-program analyses. Saturn [11] is summary-based,
using logic programming to analyse C programs. The design of
summaries is left to the analysis designer. A points-to analysis

developed with Saturn can scale up to the size of the Linux
kernel. Tang et al. [61] present summaries in the presence
of callbacks in libraries, when a function may have to be
reanalysed even if a summary has already been produced, due
to new reachability relations. This is not a situation that can
occur in our case as each function is analysed independently
of its callers. Cassez et al. [18] demonstrate the use of function
summaries in a modular analysis, using trace abstraction
refinement. Yan et al. [72] propose to redesign the Soot
framework for supporting summaries, arguing that summaries
should be integrated within program analysis frameworks.

C. Taint Analysis

A taint analysis identifies information flow from a source
(e.g., user input) to a sink (e.g., a database query). There exists
general-purpose static taint analyses [63], [64] and specific
static taint analyses, for Android [13], [36], web applica-
tions [34], JavaScript [57], and event-driven programs [21].

The notion of taint summary is not new. Zhang et al. [73]
rely on taint summaries to optimise a dynamic taint analysis.
Staicu et al. [57] dynamically extract taint specifications for
JavaScript libraries, which can then be used by static analysis
tools. The taint specifications inferred are more specific than
our summaries due to the object-oriented nature of JavaScript.

D. Static Analysis of Binaries

There is extensive work on static analysis of binaries for
different platforms. We already covered existing work for
WebAssembly, and we cover here work on different platforms,
that are the most related to this work. Most importantly,
Ballabriga et al. [15] recently presented a static analysis that
focuses on memory indirections by the use of polyhedral
numerical domains, applied to ARM binaries. Adapting this
to our setting would allow the analysis to properly support
memory indirections. Moreover, the use of numeric domains
as done by related work on binary analysis [42], [54] could
improve the precision of our analysis: knowledge of numerical
properties would enable resolving indirect calls with more
precision, as well as a better modelling of the memory.
The Soot framework [65] analyses JVM bytecode, which
is also a stack-based binary format. Our runtime structure
inference shares similarities with Soot’s analysis phases on
Baf bytecode [66], namely that the shape of the stack needs
to be inferred before and after each instruction.

VIII. CONCLUSION

The WebAssembly standard is gaining popularity, and there
is a need for analysis tools to assess the quality of WebAssem-
bly modules. In this paper, we propose the first compositional
static analysis for WebAssembly, in the form of an information
flow analysis. This analysis is compositional, enabling it
to analyse functions independently of their calling context,
resulting in a scalable analysis.

ACKNOWLEDGEMENTS

This work was partially supported by the “Cybersecurity
Initiative Flanders”.

REFERENCES

[1] Lucet, the sandboxing webassembly compiler. https://github.com/
bytecodealliance/lucet.

[2] WASI libc implementation for webassembly. https://github.com/
WebAssembly/wasi-libc.

[3] Wasm3: A high performance webassembly interpreter written in c. https:
//github.com/wasm3/wasm3.

[4] Wasmer: The leading webassembly runtime supporting wasi and em-
scripten. https://github.com/wasmerio/wasmer.

[5] WasmTime: A standalone runtime for webassembly. https://github.com/
bytecodealliance/wasmtime.

[6] WebAssembly. https://webassembly.org/.
[7] WebAssembly Core Specification. URL: https://www.w3.org/TR/

wasm-core-1/.
[8] WebAssembly: Security. https://webassembly.org/docs/security/.
[9] Webassembly specification, reference interpreter, and test suite. https:

//github.com/WebAssembly/spec.
[10] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley series in computer science /
World student series edition. Addison-Wesley, 1986.

[11] Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett,
and Peter Hawkins. An overview of the saturn project. In Proceedings
of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE’07, San Diego, California,
USA, June 13-14, 2007, pages 43–48, 2007.

[12] Bytecode Alliance. WASI: The webassembly system interface. https:
//wasi.dev/.

[13] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and
Patrick D. McDaniel. Flowdroid: precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. In ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014,
pages 259–269, 2014.

[14] Gogul Balakrishnan and Thomas W. Reps. Analyzing memory accesses
in x86 executables. In Compiler Construction, 13th International
Conference, CC 2004, Barcelona, Spain, March 29 - April 2, 2004,
Proceedings, pages 5–23, 2004.

[15] Clément Ballabriga, Julien Forget, Laure Gonnord, Giuseppe Lipari, and
Jordy Ruiz. Static analysis of binary code with memory indirections
using polyhedra. In Verification, Model Checking, and Abstract Interpre-
tation - 20th International Conference, VMCAI 2019, Cascais, Portugal,
January 13-15, 2019, Proceedings, pages 114–135, 2019.

[16] Weikang Bian, Wei Meng, and Yi Wang. Poster: Detecting
webassembly-based cryptocurrency mining. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019, pages 2685–2687,
2019.

[17] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey.
Racerd: compositional static race detection. Proc. ACM Program. Lang.,
2(OOPSLA):144:1–144:28, 2018.

[18] Franck Cassez, Christian Müller, and Karla Burnett. Summary-based
inter-procedural analysis via modular trace refinement. In 34th In-
ternational Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014,
New Delhi, India, pages 545–556, 2014.

[19] Dong Chen, Fangzhou Liu, Chen Ding, and Sreepathi Pai. Locality
analysis through static parallel sampling. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018,
pages 557–570, 2018.

[20] Patrick Cousot and Radhia Cousot. Modular static program analysis. In
Compiler Construction, 11th International Conference, CC 2002, Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceed-
ings, pages 159–178, 2002.

[21] Jonas De Bleser, Quentin Stiévenart, Jens Nicolay, and Coen De Roover.
Static taint analysis of event-driven scheme programs. In Proceedings
of the 10th European Lisp Symposium (ELS 2017), Brussels, Belgium,
April 3-4, 2017, pages 80–87, 2017.

[22] Craig Disselkoen, John Renner, Conrad Watt, Tal Garfinkel, Amit
Levy, and Deian Stefan. Position paper: Progressive memory safety
for webassembly. In Proceedings of the 8th International Workshop

on Hardware and Architectural Support for Security and Privacy,
HASP@ISCA 2019, June 23, 2019, pages 4:1–4:8, 2019.

[23] Adel Djoudi and Sébastien Bardin. BINSEC: binary code analysis with
low-level regions. In Tools and Algorithms for the Construction and
Analysis of Systems - 21st International Conference, TACAS 2015, 2015,
London, UK, April 11-18, 2015. Proceedings, pages 212–217, 2015.

[24] Azadeh Farzan and Zachary Kincaid. Compositional bitvector analysis
for concurrent programs with nested locks. In Static Analysis - 17th
International Symposium, SAS 2010, Perpignan, France, September 14-
16, 2010. Proceedings, pages 253–270, 2010.

[25] William Fu, Raymond Lin, and Daniel Inge. Taintassembly: Taint-
based information flow control tracking for webassembly. CoRR,
abs/1802.01050, 2018.

[26] Brent Fulgham and Isaac Gouy. The computer language
benchmarks game. https://benchmarksgame-team.pages.debian.net/
benchmarksgame/.

[27] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and SaiDeep
Tetali. Compositional may-must program analysis: unleashing the power
of alternation. In Proceedings of the 37th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2010,
Madrid, Spain, January 17-23, 2010, pages 43–56, 2010.

[28] David Goltzsche, Manuel Nieke, Thomas Knauth, and Rüdiger Kapitza.
Acctee: A webassembly-based two-way sandbox for trusted resource
accounting. In Proceedings of the 20th International Middleware
Conference, Middleware 2019, Davis, CA, USA, December 9-13, 2019,
pages 123–135, 2019.

[29] Eric Goubault, Sylvie Putot, and Franck Védrine. Modular static analysis
with zonotopes. In Static Analysis - 19th International Symposium, SAS
2012, Deauville, France, September 11-13, 2012. Proceedings, pages
24–40, 2012.

[30] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis
Smaragdakis. Shooting from the heap: ultra-scalable static analysis with
heap snapshots. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam,
The Netherlands, July 16-21, 2018, pages 198–208, 2018.

[31] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and J. F.
Bastien. Bringing the web up to speed with webassembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017, pages 185–200, 2017.

[32] Adam Hall and Umakishore Ramachandran. An execution model for
serverless functions at the edge. In Proceedings of the International
Conference on Internet of Things Design and Implementation, IoTDI
2019, Montreal, QC, Canada, April 15-18, 2019, pages 225–236, 2019.

[33] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout. Modular
static analysis of string manipulations in C programs. In Static Analysis
- 25th International Symposium, SAS 2018, Freiburg, Germany, August
29-31, 2018, Proceedings, pages 243–262, 2018.

[34] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Static analysis
for detecting taint-style vulnerabilities in web applications. J. Comput.
Secur., 18(5):861–907, 2010.

[35] Johannes Kinder and Helmut Veith. Jakstab: A static analysis platform
for binaries. In Computer Aided Verification, 20th International Con-
ference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings,
pages 423–427, 2008.

[36] William Klieber, Lori Flynn, Will Snavely, and Michael Zheng. Practical
precise taint-flow static analysis for android app sets. In Proceedings
of the 13th International Conference on Availability, Reliability and
Security, ARES 2018, Hamburg, Germany, August 27-30, 2018, pages
56:1–56:7, 2018.

[37] Daniel Lehmann, Johannes Kinder, and Michael Pradel. Everything old
is new again: Binary security of webassembly. In 29th USENIX Security
Symposium, USENIX Security 2020, Virtual, August 12-14, 2020, 2020.

[38] Daniel Lehmann and Michael Pradel. Wasabi: A framework for dynam-
ically analyzing webassembly. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA,
April 13-17, 2019, pages 1045–1058, 2019.

[39] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej
Lhoták, J Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer,
Uday P Khedker, Anders Møller, and Dimitrios Vardoulakis. In defense
of soundiness: a manifesto. Communications of the ACM, 58(2):44–46,
2015.

https://github.com/bytecodealliance/lucet
https://github.com/bytecodealliance/lucet
https://github.com/WebAssembly/wasi-libc
https://github.com/WebAssembly/wasi-libc
https://github.com/wasm3/wasm3
https://github.com/wasm3/wasm3
https://github.com/wasmerio/wasmer
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://webassembly.org/
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://webassembly.org/docs/security/
https://github.com/WebAssembly/spec
https://github.com/WebAssembly/spec
https://wasi.dev/
https://wasi.dev/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/

[40] Brian McFadden, Tyler Lukasiewicz, Jeff Dileo, and Justin Engler.
Security chasms of wasm, 2018.

[41] Xiaozhu Meng and Barton P. Miller. Binary code is not easy. In
Proceedings of the 25th International Symposium on Software Testing
and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016,
pages 24–35, 2016.

[42] Antoine Miné. Abstract domains for bit-level machine integer and
floating-point operations. In ATx’12/WInG’12: Joint Proceedings of
the Workshops on Automated Theory eXploration and on Invariant
Generation, Manchester, UK, June 2012, pages 55–70, 2012.

[43] Antoine Miné. Relational thread-modular static value analysis by
abstract interpretation. In Verification, Model Checking, and Abstract
Interpretation - 15th International Conference, VMCAI 2014, San Diego,
CA, USA, January 19-21, 2014, Proceedings, pages 39–58, 2014.

[44] Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck.
New kid on the web: A study on the prevalence of webassembly in
the wild. In Detection of Intrusions and Malware, and Vulnerability
Assessment - 16th International Conference, DIMVA 2019, Gothenburg,
Sweden, June 19-20, 2019, Proceedings, pages 23–42, 2019.

[45] Minh Hai Nguyen, Thien Binh Nguyen, Thanh Tho Quan, and Mizuhito
Ogawa. A hybrid approach for control flow graph construction from
binary code. In 20th Asia-Pacific Software Engineering Conference,
APSEC 2013, Ratchathewi, Bangkok, Thailand, December 2-5, 2013 -
Volume 2, pages 159–164, 2013.

[46] Jens Nicolay, Quentin Stiévenart, Wolfgang De Meuter, and Coen
De Roover. Effect-driven flow analysis. In Verification, Model Checking,
and Abstract Interpretation - 20th International Conference, VMCAI
2019, Cascais, Portugal, January 13-15, 2019, Proceedings, pages 247–
274, 2019.

[47] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles
of program analysis. Springer, 1999.

[48] Louis-Noël Pouchet. Polybench: The polyhedral benchmark suite. https:
//web.cse.ohio-state.edu/~pouchet.2/software/polybench.

[49] Lina Qiu, Yingying Wang, and Julia Rubin. Analyzing the analyzers:
Flowdroid/iccta, amandroid, and droidsafe. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018,
pages 176–186, 2018.

[50] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global
value numbers and redundant computations. In Conference Record of
the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, San Diego, California, USA, January 10-13, 1988, pages
12–27, 1988.

[51] Salim S. Salim, Andy Nisbet, and Mikel Luján. Towards a webassembly
standalone runtime on graalvm. In Proceedings Companion of the 2019
ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity, SPLASH 2019,
Athens, Greece, October 20-25, 2019, pages 15–16, 2019.

[52] Salim S. Salim, Andy Nisbet, and Mikel Luján. Trufflewasm: a
webassembly interpreter on graalvm. In VEE ’20: 16th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, virtual event, Lausanne, Switzerland, March 17, 2020, pages 88–
100, 2020.

[53] Gülfem Savrun-Yeniçeri, Wei Zhang, Huahan Zhang, Chen Li, Stefan
Brunthaler, Per Larsen, and Michael Franz. Efficient interpreter op-
timizations for the JVM. In Proceedings of the 2013 International
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, Stuttgart, Germany,
September 11-13, 2013, pages 113–123, 2013.

[54] Alexander Sepp, Bogdan Mihaila, and Axel Simon. Precise static
analysis of binaries by extracting relational information. In 18th Working
Conference on Reverse Engineering, WCRE 2011, Limerick, Ireland,
October 17-20, 2011, pages 357–366, 2011.

[55] Robbert Gurdeep Singh and Christophe Scholliers. Warduino: a dynamic
webassembly virtual machine for programming microcontrollers. In
Proceedings of the 16th ACM SIGPLAN International Conference on
Managed Programming Languages and Runtimes, MPLR 2019, Athens,
Greece, October 21-22, 2019, pages 27–36, 2019.

[56] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael
Pradel, and Andrei Sabelfeld. An empirical study of information flows
in real-world javascript. In Proceedings of the 14th ACM SIGSAC
Workshop on Programming Languages and Analysis for Security, 2019.

[57] Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders
Møller, and Michael Pradel. Extracting taint specifications for javascript

libraries. In Proc. 42nd International Conference on Software Engineer-
ing (ICSE), 2020.

[58] Quentin Stiévenart, Jens Nicolay, Wolfgang De Meuter, and Coen
De Roover. A general method for rendering static analyses for diverse
concurrency models modular. J. Syst. Softw., 147:17–45, 2019.

[59] Jian Sun, DingYuan Cao, Ximing Liu, ZiYi Zhao, WenWen Wang,
XiaoLi Gong, and Jin Zhang. Selwasm: A code protection mechanism
for webassembly. In 2019 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing, Sustain-
able Computing & Communications, Social Computing & Networking,
ISPA/BDCloud/SocialCom/SustainCom 2019, Xiamen, China, December
16-18, 2019, pages 1099–1106, 2019.

[60] Aron Szanto, Timothy Tamm, and Artidoro Pagnoni. Taint tracking for
webassembly. CoRR, abs/1807.08349, 2018.

[61] Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang,
and Hong Mei. Summary-based context-sensitive data-dependence
analysis in presence of callbacks. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages
83–95, 2015.

[62] Robert Endre Tarjan. Depth-first search and linear graph algorithms.
SIAM J. Comput., 1(2):146–160, 1972.

[63] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salva-
tore Guarnieri. Andromeda: Accurate and scalable security analysis of
web applications. In Fundamental Approaches to Software Engineering
- 16th International Conference, FASE 2013, Rome, Italy, March 16-24,
2013. Proceedings, pages 210–225, 2013.

[64] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and
Omri Weisman. TAJ: effective taint analysis of web applications. In
Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2009, Dublin, Ireland, June
15-21, 2009, pages 87–97, 2009.

[65] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick
Lam, and Vijay Sundaresan. Soot - a java bytecode optimization
framework. In Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative Research, November 8-11, 1999,
Mississauga, Ontario, Canada, page 13, 1999.

[66] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,
Patrice Pominville, and Vijay Sundaresan. Optimizing java bytecode
using the soot framework: Is it feasible? In Compiler Construction,
9th International Conference, CC 2000, Held as Part of the European
Joint Conferences on the Theory and Practice of Software, ETAPS 2000,
Berlin, Germany, March 25 - April 2, 2000, Proceedings, pages 18–34,
2000.

[67] Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W. Hamlen, and
Shuang Hao. SEISMIC: secure in-lined script monitors for interrupting
cryptojacks. In Computer Security - 23rd European Symposium on
Research in Computer Security, ESORICS 2018, Barcelona, Spain,
September 3-7, 2018, Proceedings, Part II, pages 122–142, 2018.

[68] Conrad Watt. Mechanising and verifying the webassembly specification.
In Proceedings of the 7th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA,
January 8-9, 2018, pages 53–65, 2018.

[69] Conrad Watt, Petar Maksimovic, Neelakantan R. Krishnaswami, and
Philippa Gardner. A program logic for first-order encapsulated we-
bassembly. In 33rd European Conference on Object-Oriented Program-
ming, ECOOP 2019, July 15-19, 2019, London, United Kingdom, pages
9:1–9:30, 2019.

[70] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian
Stefan. Ct-wasm: type-driven secure cryptography for the web ecosys-
tem. Proc. ACM Program. Lang., 3(POPL):77:1–77:29, 2019.

[71] John Whaley and Martin C. Rinard. Compositional pointer and escape
analysis for java programs. In Proceedings of the 1999 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages &
Applications (OOPSLA ’99), Denver, Colorado, USA, November 1-5,
1999, pages 187–206, 1999.

[72] Dacong Yan, Guoqing (Harry) Xu, and Atanas Rountev. Rethinking soot
for summary-based whole-program analysis. In Proceedings of the ACM
SIGPLAN International Workshop on State of the Art in Java Program
analysis, SOAP 2012, Beijing, China, June 14, 2012, pages 9–14, 2012.

[73] Ruoyu Zhang, Shan Huang, and Zhengwei Qi. Efficient taint analysis
with taint behavior summary. In Third International Conference on
Communications and Mobile Computing, CMC 2011, Qingdao, China,
18-20 April 2011, pages 11–14, 2011.

https://web.cse.ohio-state.edu/~pouchet.2/software/polybench
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench

	Introduction
	Motivation
	Analysis with Security Applications
	Static Analysis of Binaries
	Compositional Analysis

	MiniWasm: A Minimal Version of WebAssembly
	Syntax of MiniWasm
	MiniWasm Examples
	Semantics of MiniWasm

	Instrumentation for Information Flow
	Compositional Information Flow Analysis
	Control Flow Graphs
	Runtime Structure Inference
	Information Flow Analysis
	Information Flow Summaries
	Intra-Procedural Analysis
	Bottom-Up Inter-Procedural Analysis
	Soundiness of Summaries

	Evaluation
	Related work
	WebAssembly
	Summary-Based Analyses
	Taint Analysis
	Static Analysis of Binaries

	Conclusion
	References

