
SCALA-AM: A Modular Static Analysis Framework
Quentin Stiévenart, Maarten Vandercammen, Wolfgang De Meuter, Coen De Roover

Software Languages Lab
Vrije Universiteit Brussel, Belgium

{qstieven,mvdcamme,wdmeuter,cderoove}@vub.ac.be

Abstract—We present SCALA-AM, a modular framework
for static analysis based on systematic abstraction of abstract
machines. SCALA-AM achieves modularity by separating op-
erational semantics, abstract values and machine abstraction
concerns via actions, thus enabling language designers, static
analysis developers and machine abstraction experts to combine
their efforts. This modularity enables us to support semantics for
multiple languages, and to include multiple machine abstractions
in our framework. Different operational semantics and machine
abstractions can then be combined with minimal effort.

We evaluate our framework by demonstrating how it enables
implementing machine abstractions independently of the opera-
tional semantics, and by instantiating the framework for a static
taint analysis of Scheme.

I. INTRODUCTION

The approach of abstract interpretation using systematic
abstraction of abstract machines [17] starts from an interpreter
in small-step operational semantics implemented as an abstract
machine that transitions between states, which is systemati-
cally abstracted into an abstract abstract machine (AAM).

At the cost of precision, the domain of the abstracted
machine is designed to be finite: instead of interpreting a single
run of the program resulting in a possibly infinite sequence
of states, the machine over-approximates all possible runs
resulting in a finite graph. This graph might contain spurious
paths that may not be reachable during concrete program
execution, but can be explored by subsequent analyses.

It is hard to perform static analysis of highly dynamic
languages with higher-order functions, where control- and
data-flow are intertwined: when analyzing e.g., a function call
(f x), it may be impossible to precisely determine the value
of the operator f statically. The AAM approach is a technique
that can deal with such languages. Its main advantage is that
the resulting description of the abstracted machine is close
to how a concrete interpreter would be described. With this
technique, precision can be configured in various way, with
the most precise configuration resulting in concrete interpreta-
tion. This enables static analysis developers to experimentally
verify soundness of their tools by checking that the abstract
interpretation results correctly over-approximate the concrete
interpretation results.

However, extending AAM beyond simple calculi becomes
tedious, as the same systematic abstraction must always be
applied to the abstract machine of each newly supported
language. This forces related works using this approach to
simplify their description, e.g., by limiting their language to
the λ-calculus, mixing language semantics with machinery [6].

We believe that a better separation can be achieved between
the language semantics and the abstraction mechanism. To this
end, we developed SCALA-AM1, a static analysis framework
in Scala. SCALA-AM enables language designers to describe
language semantics independently of the abstraction concern.
Instantiating a machine abstraction with a language definition
then leads to an abstract abstract machine that can perform
both static analysis and concrete interpretation. We provide
machine abstractions and language definitions that can be
reused to minimize implementation work. Languages have to
be described in small-step operational semantics, and should
account for abstract values. For example, consider how the
following code snippet might be analyzed:
(if (>= x 0) ; x originates from user input
(sqrt x)
(error "negative number detected"))

A concrete run of this code either results in the computed
square root of x, or in a user error. When executed abstractly,
x is bound to an over-approximation of its concrete value,
such as the abstract value Int. Comparing x with 0 results
in the abstract value Bool, requiring the machine to explore
both branches of the conditional. Abstract values therefore also
affect the implementation of the operational semantics in the
abstract interpreter.

We developed SCALA-AM with modularity and reusability
of existing components in mind. Beyond the separation be-
tween machine abstraction and operational semantics, we also
introduce modularity with respect to other components. Most
importantly, we modularize the domain of abstract values used
during the interpretation in a separate component that can be
tuned independently of the semantics and the machine abstrac-
tion. Likewise, addresses and timestamps, which influence the
precision of the abstracted abstract machine, are independent
entities. In the end, static analyses can be performed on the
fly during the computation of the state graph.

In this paper, we make the following contributions:
• We identify how to separate semantics from machinery in

the AAM approach to abstract interpretation (Section II).
• We describe SCALA-AM, a modular framework that

implements this idea, where static analysis developers
and language designers can develop components indepen-
dently, each focusing on their own concerns (Section III).

• We evaluate our approach by implementing an existing
machine abstraction (Section IV), and by building a static
taint analysis in SCALA-AM (Section V).

1https://github.com/acieroid/scala-am

https://github.com/acieroid/scala-am

II. SEPARATING SEMANTICS FROM MACHINERY

The original formulation of abstract interpretation using
abstracted abstract machines [17], given in Fig. 1, mixes the
description of the semantics of the language under analysis
with abstractions that render it an abstract abstract machine.
Most of the fundamental work on abstracted abstract machines
suffer from the same problem [17, 4, 6, 5]. In this section,
we list some observations about the formalizations of current
abstract abstract machines in literature. These observations
lead us to the following insight: an abstract abstract machine
is an instantiation of operational semantics and an abstraction
mechanism. The operational semantics specifies how inter-
pretation should proceed at every program point, while the
machine abstraction is responsible for keeping its machine
state up-to-date. In SCALA-AM, the semantics’ decision on
how interpretation should proceed is abstracted through the
concept of actions, such as evaluate expression e or push a
frame on the stack. The machine abstraction handles these
actions by updating its machine state to reflect this decision.

e ∈ Exp ::= (λx.e) | (e0e1) | x

v ∈ Val ::= (λx.e)

ρ ∈ Env = Var → Addr

σ ∈ Store = Addr → P(Val × Env +Kont)

κ ∈ Kont ::= mt | ar(e, ρ, a) | fn(v, ρ, a)

ς ∈ State ::= 〈e, ρ, σ, a〉

ς 7−→ ς ′, where κ ∈ σ(a), b = alloc(ς)

〈x, ρ, σ, a〉 〈v, ρ′, σ, a〉 where (v, ρ′) ∈ σ(ρ(x))
〈(e0e1), ρ, σ, a〉 〈e0, ρ, σ t [b 7→ ar(e1, ρ, a)], b〉

〈v, ρ, σ, a〉
if κ = ar(e, ρ′, c) 〈e, ρ′, σ t [b 7→ fn(v, ρ, c)], b〉

if κ = fn((λx.e), ρ′, c) 〈e, ρ′[x 7→ b], σ t [b 7→ (v, ρ)], c〉

Fig. 1: Original formulation of AAM, where x ∈ Var are
variable names and a ∈ Addr are addresses.

Current formalizations of abstract machines lead us to the
following observations, which we enforce in SCALA-AM:

1) Semantics can act based on the current expression
in the machine state. The behavior of the semantics
is dependent on the current expression of the abstract
machine state. In SCALA-AM, the semantics provides
a stepEval function to the machine abstraction which
returns actions that the machine abstraction needs to
perform to make an evaluation step on this expression.
This function does not rely on components specific to
the machine such as the continuation store (see Item 5).
This is made explicit in SCALA-AM, whereas it is only
implicit in related work.

2) Semantics can peek at the top continuation frame
when a value is reached. The original description
of AAM for λ-calculus does not make explicit the
concept of value2, but formalizations that use an eval-

2This is because a value in λ-calculus is a closure, formed by a λ expression
with its environment, i.e., values are members of Val × Env . A state that
reaches such a value therefore has the same expression component as a state
that has to evaluate a λ expression in a given environment.

continuation machine (e.g., Johnson and Van Horn [6])
explicitly have two types of states: states where an
expression has to be evaluated, and states where a value
has been reached. In SCALA-AM, abstract machines are
explicitly in eval-continuation style (i.e., states can either
contain an expression to evaluate, or a computed value).
The SCALA-AM framework expects the semantics to
provide a stepKont function, which is called with the
top frame on the stack when a value is reached by the
abstract machine. Similarly to stepEval, this function
returns a set of actions.

3) Manipulation of the stack by the semantics is limited.
The semantics only pushes continuation frames on the
stack, or inspects the topmost frame when a value has
been reached. In SCALA-AM, the stack is manipulated
via actions, produced by stepEval and stepKont. The
topmost frame is popped by the machine abstraction
before stepKont is called, and the semantics can rely on
the machine abstraction to pass it this topmost frame.

4) The store maps a finite domain of addresses to sets of
values. Though the store appears in the abstract machine
states, the values contained in the store are only used by
the semantics. Instead of mapping addresses to sets of
values, as in the original formulation of AAM, the store
in SCALA-AM generalizes this to any lattice. When
different values must be stored at the same address,
the values are joined within the lattice. The original
description can be simulated via a powerset lattice. As
both the semantics and the machine abstraction only
interact with the lattice via an interface in SCALA-AM,
the value domain is independent of both components.

5) The abstraction of the stack is specific to the ab-
stract machine While Van Horn and Might [17] use
the same store for values and continuations, only the
abstract machine accesses the continuations and only the
semantics accesses the values. In SCALA-AM, values
and continuations are mapped in separate stores. As the
continuation store is only accessible by the machine
abstraction, the machine can improve precision by se-
lecting another continuation store mechanism, such as
the one described by Johnson and Van Horn [6], without
affecting other components. As the abstraction of the
stack is opaque to the semantics, it is up to the machine
to pass the topmost continuation frame to the stepKont

function of the semantics.
The concept of actions enables SCALA-AM to separate se-

mantics and machine abstractions in SCALA-AM. We describe
them in detail in Section III-B.

III. DESIGN OF THE FRAMEWORK

The SCALA-AM architecture is based on the observation
that operational semantics can be described separately from
machine abstractions. We explored this further and designed a
tool in which one can specify the following components inde-
pendently and compose them to implement multiple variants
of static analyses:

Fig. 2: Design of SCALA-AM.

• Semantics: language semantics describe how to evaluate
a program in a given language. Making these seman-
tics modular enables supporting multiple programming
languages. We have built semantics for Scheme and λ-
calculus, as well some variants (Scheme with concur-
rency primitives [15], by-call and by-need λ-calculus).
Section V demonstrates how users of our tool can build
upon these semantics to develop new analyses.

• Lattice: the value domain of the analyzed language is
described in a lattice, and is separated from both the
semantics and the abstract machine. The choice of lattice
influences the precision of the analysis.

• Abstraction mechanism: multiple variants of the original
AAM machine, with varying degrees of precision, exist.
Separating the machine abstraction from the semantics
of the analyzed language enables experimenting with
various abstractions. It also enables designers of abstract
machines to assess how their proposed machine fares in
a variety of languages with minimal effort. SCALA-AM
includes some abstraction mechanisms encountered in the
literature [17, 6, 5, 11]. Section IV demonstrates how new
machine abstractions can be added.

• Timestamp: timestamps introduce context sensitivity in
the abstract machine, thus improving precision.

• Address: addresses influence the precision of the analy-
sis, and are parameterized by the timestamps.

Fig. 2 illustrates the separation between components. Times-
tamps do not use any other components. Addresses may rely
on timestamps, but do not perform any operations on them.
Lattices may rely on addresses to represent values such as
closures or cons cells. The semantics employs timestamps
to allocate new addresses. The semantics also heavily relies
on the lattice component for performing semantic operations
on the values used in the language. The machine abstraction
interacts with the semantics, via the stepEval and stepKont

functions, and with the timestamp, as it increments it at every
machine step. To a lesser extent, the machine abstraction may
also depend on the lattice for performing subsumption checks.

In the remainder of this section, we describe the interface
that must be implemented by each component.

A. Semantics

Semantics are parameterized by abstract values (Abs), ad-
dresses (Addr) and timestamps (Time). The semantics are
responsible for evaluating and parsing programs, and for
providing an initial environment and store:

• stepEval: (Exp, Env, Store, Time) =>

Set[Action]: returns the set of actions that the
abstract machine must perform when evaluating an
expression in a given environment.

• stepKont: (Abs, Frame, Store, Time) =>

Set[Action]: returns the set of actions to perform
when a value has been computed and the given frame is
at the top of the stack.

• parse: String => Exp: parses a program from a string.
SCALA-AM provides parsing utilities for s-expression
based languages.

• initialBindings: Set[(String, Addr, Abs)]: returns
a collection of bindings that must be present in the
initial environment (mapping String to Addr) and store
(mapping Addr to Abs). This function can be used to
implement builtins and primitives of a language, such as
Scheme’s + or car functions.

B. Action

Actions are the key element in the interaction between the
machine abstraction and the semantics. At any point during the
evaluation, the machine may call the semantics’ stepEval and
stepKont functions. It then receives a set of actions specifying
what must be performed next in the small-step interpretation
of the program. Possible actions are the following:

• ActionReachedValue(Abs, Store): a value has been
computed. Updates to the store are part of the action.

• ActionEval(Exp, Env, Store): an expression has to be
evaluated in the given environment. Updates to the store
are also part of the action.

• ActionPush(Frame, Exp, Env, Store): a frame has to
be pushed on the stack and evaluation will proceed with
the given expression, environment and store.

• ActionError(SemErr): an error, e.g., an unbound vari-
able, has been reached by the semantics. The current trace
will not be explored further.

C. Machine Abstraction

A machine abstraction is parameterized by abstract values,
addresses and timestamps, as all these components influence
the behavior of the machine. A machine abstraction has to
implement the following functions, both of which require an
implementation of semantics for expressions of type Exp:

• eval: (Exp, Semantics) => Output computes the ab-
stract state graph output as the transitive closure of the
transition relation of the abstract machine, using the given
semantics.

• analyze[L]: (Exp, Semantics, Analysis) =>

Option[L] is similar to eval, but performs calls
to the analysis in order to propagate the analysis
information through the visited states.

D. Lattice

The abstract value domain is described as a lattice, and
must implement the JoinLattice type class which specifies
the following functions:

• bottom: Abs specifies a bottom (⊥) element that repre-
sents the absence of information.

• join: (Abs, Abs) => Abs joins the information of the
two values: join(v1,v2) implements v1 t v2.

• subsumes: (Abs, Abs) => Boolean defines the partial
order between lattice values. If subsumes(v1, v2) is true,
then we have v1 w v2, i.e., v1 contains at least as much
information as v2.

Lattices must minimally satisfy this interface. However,
the values that make up a lattice depend on the language
analyzed. Lattices can implement refined type classes that
enables the semantics to inject values into the lattice domain.
For example, we provide lattices for Scheme-like languages,
with injection functions for values commonly used in these
languages: numbers, first-class closures, vectors, cons-cells
etc. These lattices also provide basic operations on values,
from which complex primitives can be built independently of
the actual lattice implementation.

To verify our lattice implementations, we use ScalaCheck to
perform quickchecking of general lattice properties, inspired
by Midtgaard and Møller [10]. We also include handwritten
test cases. The specification of these tests is implementation
independent, and new lattice implementations can be tested
independently of other components with minimal implemen-
tation overhead.

E. Timestamp and Address

SCALA-AM also enables the user to redefine addresses and
timestamps through the type classes Address and Timestamp.
Implementations are provided for some existing strategies:
context insensitive timestamps, k-CFA timestamps [13], con-
crete timestamps to model concrete execution [17], and clas-
sical addresses using allocation-site information [1].

F. Analysis

All previous components enable performing abstract in-
terpretation. However, to perform useful static analyses, we
must not only compute the possible states reachable by a
program, but we must also derive and collect information from
these states. To this end, we define an Analysis trait that,
given a type of information L to compute over the program,
describes how this information evolves during interpretation.
This component will be used by the machine abstraction
and the following functions will be called throughout the
computation:

• stepEval: (Exp, Env, Store, Time, L) => L

specifies how to update the information when the
semantics’ stepEval function is called.

• stepKont: (Frame, Abs, Store, Time, L) => L spec-
ifies how to update the information when the semantics’
stepKont function is called.

• error: (SemErr, L) => L specifies how to update the
information when an error state with the given error
message is reached.

• join: (L, L) => L specifies how to join the information
computed by the analysis.

• init: L is the initial value for the information computed.
An analysis is typically dependent on the language analyzed

and the lattice used, as will be illustrated in Section V where
we build a static taint analysis for Scheme programs.

IV. EXAMPLE: AAM ABSTRACT MACHINE

To define a new machine abstraction, the AbstractMachine

trait, with an eval and an analyze function, must be imple-
mented. In this section, we implement the AAM approach [17]
where each state has a control component, which is either:

• ControlEval(Exp, Env) if an expression has to be eval-
uated in the given environment.

• ControlKont(Abs) if a value has been reached and a
frame will have to be popped from the stack.

• ControlError(SemErr) if an error has been reached.
States of this machine are represented by class State

composed of a control component, a store binding addresses to
abstract values, a continuation store binding continuation ad-
dresses to continuations, a continuation address a representing
the current continuation, and a timestamp t.

The step method of State computes the set of its successor
states. step checks the control component, dispatches to the
appropriate function in the semantics and then integrates the
actions to generate the set of resulting states:
def step(sem: Semantics): Set[State] = control match {
case ControlEval(e, env) =>
integrate(a, sem.stepEval(e, env, store, t))

case ControlKont(v) => kstore.lookup(a).flatMap({
case Kont(frame, next) =>
integrate(next, sem.stepKont(v, frame, store, t)) })

case ControlError(_) => Set() }

def integrate(a: KontAddr, as: Set[Action]): Set[State] = {
val t2 = time.tick(t)
as.map({
case ActionReachedValue(v, store) =>
State(ControlKont(v), store, kstore, a, t2)

case ActionPush(frame, e, env, store) =>
val next = NormalKontAddress(e, t)
val kstore2 = kstore.extend(next, Kont(frame, a))
State(ControlEval(e, env), store, kstore2, next, t2)

case ActionEval(e, env, store) =>
State(ControlEval(e, env), store, kstore, a, t2)

case ActionError(err) =>
State(ControlError(err), store, kstore, a, t2) }) }

The inject helper function takes the expression to analyze,
and returns the initial state by adding the necessary extra
information: the initial environment and store, the initial
continuation store (empty), the initial continuation address
(HaltKontAddress, a specific address indicating that the stack
is empty), and the initial timestamp.

We use the halted method to check whether a state has
reached the end of the execution. This function returns true
if the state is an error state or a value state with no current
continuation.

The eval function of the machine abstraction first generates
the successors of the initial state by calling step and then loops

over these states. It keeps track of its visited states to avoid
re-exploring states already explored.
def eval(exp: Exp, sem: Semantics): Output = {
def loop(todo: Set[State], visited: Set[State]):
AAMOutput = todo.headOption match {
case Some(s) if visited.contains(s) =>

loop(todo.tail, visited, graph)
case Some(s) if (s.halted) =>

loop(todo.tail, visited + s, graph)
case Some(s) =>

loop(todo.tail ++ s.step(sem), visited + s)
case None => AAMOutput(...) }

loop(Set(State.inject(exp, sem.initialBindings)), Set()) }

Although not shown here, a state graph can also be incre-
mentally generated and returned in the output.

Static analysis can be either performed on the graph re-
sulting from eval, or on the fly via the analyze function,
which works very similarly to eval, but propagates analysis
information while exploring the graph.

V. CASE STUDY: TAINT ANALYSIS OF SCHEME PROGRAMS

We now demonstrate how a static taint analysis on higher-
order side-effecting programs can be constructed in SCALA-
AM. We only give a general outline of how the analysis is
constructed, but the full implementation is publicly available3.

A. Lattice

The analysis uses a product lattice that combines a standard
constant propagation lattice with a taint lattice (Fig. 3). The
standard lattice models the possible values obtained during the
evaluation of the program, while the taint lattice models the
taint status of the values. A value starts as untainted, until
it goes through a source. Due to imprecision in the analysis,
tainted and untainted values may need to be joined, in which
case the result is the top element of the lattice, i.e., a value
that may be tainted. In practice, tainted values are annotated
with the program location of the source of taint, and locations
are joined in a set when taint status has to be joined.

>

UNTAINTED TAINTED

⊥

Fig. 3: The taint lattice used in the static taint analysis.

B. Language and Semantics

As Scheme semantics are already implemented in SCALA-
AM, we just extend the semantics with three primitives that
model sources that taint values, sanitizers, and sinks.

1) (taint x) returns the value of its argument with taint
status set to TAINTED.

2) (sanitize x) returns the value of its argument with
the taint status set to UNTAINTED.

3) (sink x) results in an error if a tainted value may
flow to x. If the taint status of x is >, it results in both
an error and a non-error successor state.

In practice, sources, sinks, and sanitizers are modeled by
annotating parts of a program instead of relying on explicit

3https://github.com/acieroid/scala-am/wiki/Example:-static-taint-analysis

primitives. However, program transformations can automati-
cally convert such annotations to these three primitives without
having to modify the semantics.

C. Analysis

We design an analysis that locates potential flow of tainted
values from sources to sinks in Scheme programs. When a
tainted value flows to a sink, it results in an error, as we
have detected a potential leak in the program. The information
computed by the analysis is a set of leak errors that can
be reached during exploration of the program state space.
The join operation is the union over sets of errors, and the
initial value of the analysis is the empty set. The precision
of the resulting analysis depends on components such as
the machine abstraction, the addresses and timestamps. One
can achieve different levels of flow-sensitivity and context-
sensitivity depending on the configuration chosen.

D. Usage

The following code depicts the steps needed to perform the
analysis on a program stored in the form of a string.
val prims = new TSchemePrimitives // instantiate primitives
val sem = new SchemeSemantics(prims) // instantiate semantics
// parse program to an expression
val pgm = sem.parse("(let* ((x (taint 1)) (y x)) (sink y))")
val m = new AAM // instantiate an abstracted abstract machine
val res = m.analyze(pgm, sem, TaintAnalysis) // run analysis

VI. RELATED WORK

Most of the currently available static analysis frameworks
have little support for extensions to multiple programming
languages, especially for higher-order languages. Notable ex-
ceptions are Facebook’s tools pfff4 and Infer5. Pfff supports
many languages, including languages with higher-order func-
tions such as Lisp, Python and Haskell. However, each new
language must implement its own analyses, as pfff requires
specifying a function that generates the control flow graph for
each language. We rely on the abstract machine to perform the
work of building the control flow graph, based on the actions
returned by the semantics. Infer only supports intra-procedural
analyses of object-oriented imperative languages, by relying
on the fact that such languages share similar concepts. Our
framework can be easily extended to support new concepts,
and performs inter-procedural analysis.

The K [12] framework and Kiama [14] both allow to
express abstract machines with the same programming effort
as in SCALA-AM, but have no built-in support for abstracting
components of the machine to perform static analysis.

The RASCAL [8] framework provides a domain-specific lan-
guage to develop analysis and manipulation tools. On the other
hand, we provide a framework focused on abstract interpreta-
tion, written in an expressible general purpose language, which
shares some features with RASCAL (e.g., data-type definitions,
strong static typing, pattern matching, comprehension).

The Clang static analyzer [9] supports LLVM bytecode,
which can be generated for multiple languages. However, some

4http://github.com/facebook/pfff
5http://fbinfer.com

https://github.com/acieroid/scala-am/wiki/Example:-static-taint-analysis
http://github.com/facebook/pfff
http://fbinfer.com

languages may not have a natural compilation to LLVM byte-
code and useful information can be lost during the compilation
process. The IKOS tool [3] also uses a specific representation
in which supported languages have to compile. This low-level
representation can be generated from LLVM bytecode. How-
ever, just like the Clang static analyzer, potential information
may be lost between the original source code and the analyzed
intermediate representation. Likewise, the Soot [16, 2] and
the Wala frameworks6 perform intra- and inter-procedural
dataflow analysis on Java intermediate bytecode. Though the
Wala framework has recently been extended with support
for Javascript, neither framework provides mechanisms for
developers to add support for other languages.

VII. FUTURE WORK

Our framework has three purposes: offer tool support for
language designers that describe languages with operational
semantics, enable static analysis developers to implement
static analyses with minimal implementation effort, and enable
researchers in abstract interpretation to prototype different
machine abstractions formulations in a variety of languages.
We envision several directions for the future work towards
each of these goals.

a) Semantics: While Section V demonstrates that
SCALA-AM can already be used as a base for building inter-
esting static analyses for Scheme, we wish to investigate how
to facilitate supporting more language features. We believe
that while some features (e.g., objects and records) can be
implemented solely by modifying the lattice domain, others
(e.g., exceptional control flow) might require extending the set
of actions. These additions would require some, but minimal
changes in the abstract machine.

b) Machine Abstractions: The machine abstractions pro-
vided with the framework are currently implemented in a rela-
tively straightforward manner, with no focus on performance.
We are interested in implementing existing optimizations [7]
to assess their impact on performance. We already investigated
the use of global store widening, which has a great impact on
performance. We also envision our framework being used to
experiment with new machine abstractions and optimizations.

c) Static Analysis: Work on the framework mostly fo-
cused on the language definition and machine abstraction
components, but we plan on experimenting with more complex
static client analyses. We also plan on building some analyses
that can work across multiple languages to enable tool support
for the same analysis on languages supported by SCALA-AM.

VIII. CONCLUSION

We presented the design and implementation of SCALA-
AM, a highly modular static analysis framework. SCALA-AM
enables language designers to add support for new languages
and new language constructs, without affecting the analysis
aspect. Static analysis developers can rely on existing language
semantics and machine abstractions to describe static anal-
yses in a high-level implementation. Abstract interpretation

6http://wala.sourceforge.net

researchers can experiment with abstract machine abstractions
in order to optimize and improve the precision of the analyses.
We believe this is a step forward towards a framework that can
be used as a foundation for building static analyses that span
across multiple languages, as well as an experimentation plat-
form that relieves implementers from the need to implement
the same parts of an analysis over and over again.

ACKNOWLEDGMENTS

Quentin Stiévenart is funded by the GRAVE project of the
Research Foundation - Flanders (FWO).

REFERENCES

[1] L. O. Andersen. Program analysis and specialization for
the C programming language. PhD thesis, University of
Cophenhagen, 1994.

[2] E. Bodden. Inter-procedural data-flow analysis with
ifds/ide and soot. In SOAP’12. ACM, 2012.

[3] G. Brat, J. A. Navas, N. Shi, and A. Venet. Ikos: A frame-
work for static analysis based on abstract interpretation.
In SEFM’14. Springer, 2014.

[4] C. Earl, I. Sergey, M. Might, and D. Van Horn. Introspec-
tive pushdown analysis of higher-order programs. ACM
SIGPLAN Notices, 47(9), 2012.

[5] T. Gilray, S. Lyde, M. D. Adams, M. Might, and
D. Van Horn. Pushdown control-flow analysis for free.
ACM SIGPLAN Notices, 51(1), 2016.

[6] J. I. Johnson and D. Van Horn. Abstracting abstract
control. ACM SIGPLAN Notices, 50(2), 2015.

[7] J. I. Johnson, N. Labich, M. Might, and D. Van Horn.
Optimizing abstract abstract machines. ACM SIGPLAN
Notices, 48(9), 2013.

[8] P. Klint, T. Van Der Storm, and J. Vinju. Rascal: A
domain specific language for source code analysis and
manipulation. In SCAM’09, pages 168–177. IEEE, 2009.

[9] T. Kremenek. Finding software bugs with the clang static
analyzer. Apple Inc, 2008.

[10] J. Midtgaard and A. Møller. Quickchecking static anal-
ysis properties. In ICST’15. IEEE, 2015.

[11] M. Might and D. Van Horn. A family of abstract
interpretations for static analysis of concurrent higher-
order programs. In Static Analysis. Springer, 2011.

[12] G. Rosu and T. Serbanuta. An overview of the K
semantic framework. JLAP, 79(6), 2010.

[13] O. Shivers. Control-flow analysis of higher-order lan-
guages. PhD thesis, Carnegie-Mellon University, 1991.

[14] A. M. Sloane. Lightweight language processing in kiama.
In GTTSE’09, pages 408–425. Springer, 2009.

[15] Q. Stievenart, J. Nicolay, W. De Meuter, and
C. De Roover. Detecting concurrency bugs in higher-
order programs through abstract interpretation. In
PPDP’15. ACM, 2015.

[16] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot-a java bytecode optimization
framework. In CASCON’99. IBM Press, 1999.

[17] D. Van Horn and M. Might. Abstracting abstract ma-
chines. ACM SIGPLAN Notices, 45(9), 2010.

http://wala.sourceforge.net

	Introduction
	Separating Semantics from Machinery
	Design of the Framework
	Semantics
	Action
	Machine Abstraction
	Lattice
	Timestamp and Address
	Analysis

	Example: AAM Abstract Machine
	Case Study: Taint Analysis of Scheme Programs
	Lattice
	Language and Semantics
	Analysis
	Usage

	Related work
	Future Work
	Conclusion

