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Abstract. Design-by-contract programming is a best practice in which
a contract is used to specify the expected behavior of program elements
such as functions and classes. Although enforcing compliance with these
contracts at run time renders a program robust against unexpected fail-
ures, they also introduce a substantial contract monitoring overhead.
Soft contract verification intends to reduce this overhead by verifying as
many contracts as possible through static analysis. Thus far, the static
analyses underlying existing soft contract verifiers have been based on
adaptations of the AAM technique for CESK machines. Intended solely
to introduce the concept of soft contract verification, these purpose-built
analyses lack configurability. In this paper, we propose a novel static
analysis for soft contract verification called abstract concolic execution.
We systematically abstract a concolic execution, which is a form of dy-
namic symbolic execution, into abstract concolic execution, rendering
the technique terminating and sound for any program input. To show
that our analysis is more configurable than the state-of-the-art analy-
sis supporting soft contract verification, we propose two variations of the
analysis. Finally, we show that our approach is comparable to if not more
precise than the state of the art at the cost of performance. We find that
in 10 out of the 24 benchmark programs, our approach is more precise
than the state-of-the-art approach, while being as precise in 9 of them
and less precise in 5.

1 Introduction

Design-by-contract [14] is a programming methodology where program elements
(e.g., classes or functions) are annotated with contracts. These contracts usually
encoded invariants or pre- and post-conditions on the program element. In the
case of a function, its pre-conditions are usually about the arguments of the
function, while its post-conditions are about its return value and potential side
effects. Expanding upon the work of Meyer et al. [14], Felleisen [5] et al. pro-
pose a contract language for higher-order programming languages. A well-known
implementation of their language can be found in Racket, where contracts are
embedded and implemented in the same language as the elements they anno-
tate. Unfortunately, as these contracts are often highly dynamic (e.g., depend on
the function input, or change over time), they require run-time contract checks,
resulting in a large performance penalty when executing the program.
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Multiple approaches, collectively known as soft contract verifiers [17,16,24],
have been proposed to verify as many contracts as possible before running the
program. The first incarnation of this approach by Nguyen et al. [17] relies on
higher-order symbolic execution, a calculus of opaque or symbolic values refined
with predicates originating from contracts in the code. Unfortunately, their ap-
proach is not suitable for more complex programs that exhibit side effects. Thus,
in follow-up work [16], Nguyen et al. propose a soft contract verifier that also
takes side effects into account. The approach is based on the systematic ab-
straction of a concrete CESK machine, adding machinery for tracking symbolic
variables and symbolic path constraints along the way.

More specifically, Nguyen et al. [16] extend the CESK machine with a store
cache and path constraint. The store cache tracks locally-precise information
about the in-scope variables by mapping variables to post-values which are com-
binations of abstract and symbolic values. The resulting abstract machine im-
plements a form of static symbolic execution but renders it finite by carefully
constructing and updating its store caches. Unfortunately, this renders the re-
sulting analysis less configurable and precludes the application of common op-
timizations such as global store widening. This is because the store cache must
be at a specific location in the state space and is governed by rules tailored to
the analysed programming language.

Instead, we propose systematic abstraction of a concolic execution of the pro-
gram to determine the reachability of contract violations. Concolic execution is a
form of dynamic symbolic execution in which the program is executed concretely
while keeping a symbolic representation alongside each program value. To this
end, the program is instrumented to track each branching point in its execution
as well as the conditions leading to that branching point. When the execution
has terminated, the satisfiability of the conditions of the non-taken branches is
checked, and a model is generated representing a mapping of symbolic variables
to values that satisfy the selected condition. The program is executed again with
the newly-obtained values. This process is repeated until all possible branches
have been explored or until a time budget is exceeded. Unfortunately, concolic
execution is not suitable for fully automated program verification as it is not
guaranteed to terminate. This potentially leads to false negatives as it might fail
to discover contract violations in the program. Abstracting a concolic execution
engine solves this limitation by computing an over-approximation of the program
behaviour, eliminating false negatives at the cost of introducing false positives.

In short, the contributions of this paper are as follows:

– We are the first to explore the idea of abstract concolic execution as an ab-
stract interpretation of concolic execution for soft contract verification. We
do so by systematically abstracting a CESKφ machine, a new variation on a
CESK machine augmented with failure continuations and path constraints.
We claim that this systematic abstraction results in a more configurable anal-
ysis compared to the state-of-the-art soft contract verification approaches.
Furthermore, we demonstrate this claim by proposing two variations of the
abstract machine.
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– We formulate and prove a soundness and termination theorem for the result-
ing analysis, showing that the analysis terminates for any analysed program,
and that its results are guaranteed to over-approximate the actual run-time
behaviour of the program.

– Finally, we apply this novel analysis technique to the problem of soft con-
tract verification [24,16,17]. Our analysis enables novel configurations of the
resulting abstract machine, yielding different trade-offs between performance
and precision.

In what follows we recall existing soft contract verification techniques and
highlight their shortcomings. Next, we proceed by explaining why concrete con-
colic execution is not sufficient for the purposes of soft contract verification, and
highlight challenges for its abstraction process. Next, we formalize a concrete
version of a concolic execution engine using a variation on the CESK machine
called the CESKφ machine. Then, we systematically abstract this machine by
applying the AAM method [13] to obtain a finite and sound static analysis. We
show that the resulting analysis is more configurable than state-of-the-art soft
contract verification approaches by formalizing two variations of the abstract
machine. We conclude with an evaluation of our approach by applying it to
benchmark programs found in other related soft contract verification work.

2 State of the Art in Soft Contract Verification

In this paper we consider functional design-by-contract languages, more specif-
ically the contract model introduced by Findler et al. [9] as implemented in
Racket. Listing 1 depicts the square function and its contract. The contract
stipulates that if the arguments of the function are numbers, the function’s re-
turn value will be a positive number. Analysing the function’s implementation
carefully, one can deduce that this is indeed the case since squaring a number
always results in a positive number.

Listing 1 A square function annotated with a contract stipulating that if the
input is a number, the output will be a positive number.

def square(x: number ?): positive? =

return x*x

Contracts are not only used in user-defined functions, but also for primitive
functions provided by the host programming language. The multiplication op-
erator, for instance, requires that its arguments are numbers. Failing to provide
numbers as arguments results in a contract violation at run time. In the example
depicted in Listing 1, however, such a contract violation is not possible because
the contract on the argument of the function already requires that the argu-
ment is a number. Thus, the program would fail if the square function was not
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called with a number before reaching the multiplication operator. This results
in more helpful error messages, as errors are reported at the earliest location
where expectations are not met. The example also shows that the multiplication
operator can never be called with an invalid argument, as the execution of the
program halts before the execution of the body of square. Note that all paths
to the multiplication operator have a number? constraint, highlighting the need
for path-sensitive reasoning when verifying contract validity.

In general, contracts in functional programs can encode arbitrary predicates
on the arguments and return value of a function. The contract system proposed
by Findler et al. even allows for contracts on the return value of the function to
be specified in terms of the arguments of the function, resulting in a dependent
contract. This highlights the need for reasoning about arbitrary constraints on
unknown (user) input.

Combining these needs naturally leads to static symbolic execution which
represents unknown (user) input and subsequent operations on this input sym-
bolically, and in tandem keeps track of a path constraint encoding the symbolic
conditions necessary for a particular program state to be reached. These path
constraints are updated whenever execution reaches a branching point (e.g., an
if statement). Upon a branching point, a symbolic condition is added to the path
constraint. Unfortunately, static symbolic execution is known to not always ter-
minate such as when programs have an unbounded number of input statements,
or whose input statements are under-constrained. Static symbolic execution is
therefore unsuitable for verification purposes.

Nguyen et al. [16] instead propose symbolic verification which ensures a sound
and terminating process for checking the reachability of contract violations. To
this end, they abstract a CESK machine and extend the abstracted machine with
a path constraint and a store cache. This store cache keeps track of symbolic
information about the variables in scope. To ensure termination, Nguyen et
al. only consider looping through recursion (i.e., through function calls) and
carefully adapt the store cache to ensure termination. In the case of function
calls, function arguments are replaced with symbolic variables corresponding to
the names of the parameters of function. This ensures that a symbolic expression
tree remains finite, but also discards potentially essential information from the
caller of the function.

Summarising the discussion, we identify the following shortcomings of exist-
ing soft contract verification approaches:

– Unnecessary precision loss Simply discarding symbolic information from
the caller of the function and replacing it with a symbolic variable for each
parameter results in unnecessary precision loss. The caller of the function
no longer controls which symbolic variables it passes to the callee. There is
no longer a connection of the path constraint from the caller of the function
with that of the callee.

– Ad-hoc store cache management Store caches represent locally precise
information about the variables in scope of the current program state. Their
contents and update rules are determined by analysis developers based on
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factors such as precision and termination. In the case of the state-of-the-
art soft contract verification work, store caches are invalidated at function
call boundaries, and whenever mutation of variables occurs. This ad-hoc
management of the store cache makes common systematic optimizations
such as global store widening more difficult to implement and formalize.

We address these shortcomings by proposing abstract concolic execution, a
novel abstraction interpretation of concolic execution. In this setting, the ab-
stract machine is no longer extended with a store-cache that collects locally
precise information. Instead, we guarantee termination by properly abstracting
symbolic variables and symbolic expressions. In the remainder of this paper we
assume (as demonstrated in section 7), without loss of generality, that all con-
tract checks can be translated to first-class assert statements.

3 From Concrete to Abstract Concolic Execution
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Fig. 1: Execution tree after two concolic execution of the square program

In the listing below, we present a program that computes the square of a
number through repeated additions of x coming from user input. A concolic
execution engine executes this program by first generating a concolic value, con-
sisting of a program value and symbolic variable, that substitutes the missing
user input. In the remainder of this paper, symbolic variables are typeset with
a monospace letter (usually x) followed by a unique number (e.g., x0 for the
first symbolic variable being generated). Next, the concolic execution engine ex-
ecutes the square function which contains a branching point, i.e., to stop the
loop if i >= x and to continue whenever i < x. This is represented in a sym-
bolic execution tree as a node created for each branching point, labelled with the
conditions leading to the next branching point in the program. The edges of the
tree are labelled with truth values for the conditions (T for true, F for false).
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Assuming that the initial input, named x0, has been arbitrarily chosen to be 4,
the symbolic execution tree grows to contain 5 branching points, one for each
iteration of the loop. This execution is depicted in Figure 1a. The first execution
eventually reaches the node highlighted in green, and then terminates.

def square(x) =

y = 0

i = 0

while i < x do

y = y+x

i++

return y

print(square(input ()))

Next, the concolic execution engine selects an unexplored node in its exe-
cution tree (highlighted in red in Figure 1a), collects all constraints alongside
the path leading up to that unexplored node and subsequently generates inputs
(i.e., a model) satisfying these constraints. These inputs result into a new value
for x used in the next execution of the program. In this case, the value 5 is
chosen as the input for x in the next concolic execution (Figure 1b). Normally,
this process is repeated until all nodes in the execution tree have been explored.
Unfortunately, in this case the execution tree continues to grow indefinitely be-
cause different values for x0 can continue to be computed and the exploration
never finishes. Thus, in this example, the execution can only terminate after a
set timeout has been reached rendering the program exploration incomplete. To
summarize, this example illustrates a number of problems with dynamic sym-
bolic execution:

– Exploration of redundant states: A concolic execution engine might
explore nodes that are behaviourally equivalent to another node in the exe-
cution tree but differ in its path condition. In the example program, increas-
ing the number of iterations of the loop does not yield any new interesting
behaviour, yet their concolic execution states are considered different.

– Non-termination: The concolic execution approach is not guaranteed to
terminate. This problem is illustrated in the example above as the execution
tree keeps growing with increasing values for x. This results in an unsound
analysis from a static analysis point of view, as it does not consider all
possible paths in the program. This is problematic for verification purposes
as the program cannot be verified without considering all of its paths.

Abstract interpretation [4] could offer a solution to these problems by defining
an abstraction for each component of the concolic execution engine. Abstract
interpretation solves the first problem by abstracting concolic execution states,
rendering identical those that do not differ in the property of interest. The
second problem is solved by abstracting reoccurring subtrees into a graph shared
between all parts of the tree in which the subtree occurs.
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In this paper, we investigate whether this approach can be applied for ab-
stracting concolic execution. This problem is challenging because a number of
concolic execution aspects that need to be abstracted:

– Symbolic representations: A symbolic execution engine uses symbolic
representations of program values in order to constrain them through the
program’s path condition. These symbolic representations are not necessarily
finite (e.g, a loop containing an assignment x = x+ 1, resulting in repeated
suffixes of +1 in the symbolic expression). To guarantee termination without
complex widening operators, an abstract interpretation of a concolic execu-
tion engine needs to abstract these symbolic representation so that a finite
number of them is present at all times.

– Symbolic variables: In a concrete run of a concolic execution engine, the
same input statement may be executed multiple times (e.g., in a loop), re-
sulting in distinct concrete values and symbolic variables for each execution.
Unfortunately, this is often a source of non-termination in a concolic execu-
tion engine. An abstract interpretation needs to abstract multiple concrete
executions into a single abstract execution having a single abstract value
with a corresponding abstract symbolic variable.

– Path constraints: Since the path constraint consists of first-order logic
assertions over a number of symbolic expressions, the interpretation of the
truth values of its abstract counterpart needs to account for abstract sym-
bolic expressions too. Moreover, as infinite path constraints often give rise to
non-terminating concolic execution engines, they need to be rendered finite
for the resulting analysis to terminate without complex widening.

– Model: After each concrete symbolic execution run, a model is computed
which maps symbolic variables to concrete values so that the next iteration
follows the intended path to an unexplored node of the execution tree. Since
abstract symbolic variables could correspond to multiple input statements,
an abstract version of this model needs to map the statement’s abstract
symbolic variable to an abstract value that subsumes all possible invocations
of the same input statement.

In this paper, we propose an abstraction of the CESKφ machine, a new
variation of the CESK machine [8], by applying the abstracting abstract machines
(or AAM ) recipe [13]. We investigate whether this process results in an efficient
and precise static analysis for the analysed program. And if so, what machine
configurations work best in terms of precision and performance.

4 Concrete Concolic Execution

In this section we present a concrete version of a concolic execution engine. This
concrete version largely follows the standard concolic execution semantics [20].
However, it does not explicitly model the execution as an execution tree. In-
stead, it relies on failure continuations to model backtracking and program re-
execution. We do so in order to make the abstraction of the resulting machine
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easier. We formalize the concolic execution engine for a language λs. The se-
mantics is defined as a small-step relation over a CESKφ machine, extending
the standard CESK machine [8] with constraints and failure continuations.

4.1 Syntax

Figure 2 depicts the syntax of our language. The language is an A-normal form
version of the λ-calculus, extended with support for if expressions, let expressions
and input statements.

e ::= let x = e in e | if ae e e | ae ae | input
ae ∈ Atomic ::= n | b | x | λx.e x ∈ Identifier n ∈ N b ∈ B ::= true | false

Fig. 2: Syntax of λs

4.2 Semantics

ς ∈ Σ ::= ⟨c, σ, κ, ψ, ctx,M, ϕ, V ⟩ c ∈ Control ::= ev(e, ρ) | ap(v)

σ ∈ Store = Address 7→ Value κ ∈ Continuation ::= let(x, e, ρ) :: κ | ∅

ψ ∈ FailContinuation ::= branch(ϕ) :: ψ | ∅ M ∈ Model ::= SymVar 7→ ProgramVal

ρ ∈ Environment = Identifier 7→ Address α ∈ Address = Label × Context

ctx ∈ Context = Label vp ∈ ProgramVal ::= n | b | (λx.e, ρ)

s ∈ SymbolicVal ::= b | ∅ | x | op(s, . . . , s) xi ∈ SymVar = Address

v ∈ Value = ProgramVal × SymbolicVal ϕ, φ1, φ2 ∈ Formula ::= φ1 ∧ φ2 | s | ¬s

b ∈ B ::= true | false Label is a program location

Fig. 3: State space of λs. A sequence is denoted by an overline, for instance, the
set of sequences of elements a ∈ A is denoted as A.

Figure 3 depicts the state space of λs’s semantics. Concolic values are rep-
resented by the Value sort. Such concolic values consist of a program value and
symbolic expression of the SymbolicValue sort. This symbolic expression can be
empty (denoted by ∅) to indicate that the corresponding program value does not



Abstracting Concolic Execution for Soft Contract Verification 9

have a suitable symbolic representation, such as closures. Addresses are repre-
sented by their allocation site and combined with a calling context consisting of
a call-site history. The allocation site for a variable x is denoted as ℓ(x), assum-
ing that an injective labelling function ℓ is defined for any program expression
e. This choice for the address representation automatically yields a valid address
allocation strategy where the new address is derived from the calling context and
the label of the expression at the allocation-site. Addresses generated according
to this allocation strategy are unique since each allocation site can repeat only
when the program contains a loop. However, since the λs language does not
contain any looping constructs, looping can only occur through function calls,
meaning that our calling context provides a sufficient distinction from addresses
of previous loop iterations. Symbolic variables are treated identically to addresses
but are generated by another meta-function called fresh.

The state space is derived from the possible program states which consist of
the following components: a control (c), a store (σ), a continuation stack (κ), a
failure continuation stack (ψ), a model (M), an unbounded calling context (ctx),
a path condition (ϕ), and the set of visited branches. The control component
is either an evaluation state, or a continuation application state. The former
includes an environment ρ in which an expression e is to be evaluated. The
latter includes the value that should be sent to the continuation on top of the
continuation stack. The model consists of a mapping from addresses to program
values. A lookup in this mapping is denoted asM(x) where x denotes the address.
If the mapping is undefined for some x a random value is returned instead.

Next, as depicted in below, we define an atomic evaluation function J·K and
a small-step relation ⇝ (Figure 4). The atomic evaluation function is defined as
expected. Literal numbers and boolean literals map to their respective concolic
value, and λ expressions evaluate to closure values which do not have a symbolic
counterpart. Variable references are evaluated to their respective concolic values
by looking up their address and values from the environment and store.

JbK(ρ, σ) = (b, b) JnK(ρ, σ) = (n, n)

Jλx.eK(ρ, σ) = ((λx.e, ρ), ∅) JxK(ρ, σ) = σ(ρ(x))

The evaluation of function applications proceeds as usual. Rules [ST-Let1] and
[ST-Let2] depict the semantics for introducing new lexical scopes. [ST-Let1]
first evaluates the binding expression e1 to a value by transitioning to an ev
control state, and pushing a let continuation on the continuation stack. This
continuation is applied in rule [ST-Let2] by binding the value of the evaluated
expression to the variable x. Conditional expressions require more attention as
they introduce additional constraints in the path condition. This is depicted
by rule [ST-IfTrue] and [ST-IfFalse] which first evaluate the condition to a
concolic value, check whether the concolic value is true or false, and evaluate
the consequent and alternative branch accordingly. While doing so, the failure
continuation stack is extended with a branch failure continuation, tracking which
branch has not been taken. Metafunction in accepts four arguments: a path
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constraints, a visited set and two failure continuations. The metafunction returns
the third argument whenever the path constraint is not in the visited set and
returns the fourth argument otherwise. This ensures that the same branch is not
repeatedly executed in subsequent concolic execution runs by checking whether
the alternative path constraint is part of the visited set. Finally, rule [Input]
reduces an input expression to either a new random value or to a value from the
model M if one is defined in its mapping.

⟨ev(ae, ρ), σ, κ, ψ, ctx,M, φ, V ⟩⇝ ⟨ap(JaeK(ρ, σ), σ, κ, ψ, ctx,M, φ, V ⟩ ST-Atomic

JaeK(ρ, σ) = (true, s) φt = φ ∧ s
φf = φ ∧ ¬s ψ

′
= in(φf , V, branch(φf ) :: ψ,ψ)

⟨ev(if ae e1 e2, ρ), σ, κ, ψ, ctx,M, φ, V ⟩
⇝⟨ev(e1, ρ), σ, κ, ψ′

, ctx,M, φt, {φf} ∪ V ⟩

ST-IfTrue

JaeK(ρ, σ) = (false, s) φt = φ ∧ s
φf = φ ∧ ¬s ψ

′
= in(φt, V, branch(φt) :: ψ,ψ)

⟨ev(if ae e1 e2, ρ), σ, κ, ψ, ctx,M, φ, V ⟩
⇝⟨ev(e2, ρ), σ, κ, ψ′

, ctx,M, φf , {φt} ∪ V ⟩

ST-IfFalse

⟨ev(let x=e1 in e2, ρ), σ, κ, ψ, ctx,M, φ, V ⟩
⇝⟨ev(e1, ρ), σ, let(x, e2, ρ) :: κ, ψ, ctx,M, φ, V ⟩ ST-Let1

α = alloc(ℓ(x), ctx)

⟨ap(v), σ, let(x, e2, ρ) :: κ, ψ, ctx,M, φ, V ⟩
⇝⟨ev(e2, ρ[x 7→ α]), σ[α 7→ v], κ, ψ, ctx,M, φ, V ⟩

ST-Let2

Jae1Kρ, σ = (λx.e, ρ
′
) Jae2K(ρ, σ) = v α = alloc(ℓ(x), ctx)

⟨ev(ae1ae2, ρ), σ, κ, ψ, ctx,M, φ, V ⟩
⇝⟨ev(e, ρ′ [x 7→ α]), σ[α 7→ v], κ, ψ, ℓ(ae1ae2) :: ctx,M, φ, V ⟩

ST-App

(v, v′) = M(x) x = fresh(ℓ(input), ctx)

⟨ev(input, ρ), σ, κ, ψ, ctx,M, φ, V ⟩
⇝⟨ap((v, x)), σ, κ, ψ, ctx,M, φ, V ⟩

Input

M
′
= model(φ)

⟨ap(v), σ, ∅, branch(φ) :: ψ, ctx,M, φ
′
, V ⟩⇝ ⟨ev(e0, ρ0), σ0, ∅, ψ, ∅,M ′

, ∅, V ⟩
ST-Backtrack

Fig. 4: Small-step semantics of the concolic execution for λs

Rule [ST-Backtrack] enables backtracking to program states that were not
executed in the previous concolic execution. It does so by applying the failure
continuation whenever the program terminates, and by restarting the program
execution with an empty calling context and a model M ′ generated by meta-
function model giving an assignment of symbolic variables to program values that
satisfies the path constraint stored in the failure continuation. This corresponds
to a depth-first search (DFS ) of the concolic execution tree.
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The complete concolic execution is defined as the least-fixed point of the
small-step evaluation relation, as depicted by Eval and Run. Variables ρ0 and
σ0 denote the initial environment and store respectively.

Eval(Σ) = Σ ∪
⋃
ς∈Σ
ς⇝ς′

{ς ′} Run(e0) = lfp Eval {⟨ev(e0, ρ0), σ0, ∅, ∅, ∅, ∅, ∅, ∅⟩}

5 Abstracting Concolic Execution

In this section we develop a sound over-approximation of the concolic execu-
tion semantics from the previous section. We do so by following the AAM [13]
approach which proposes to abstract a concrete machine and its operational se-
mantics in a component-wise manner. This results in a sound over-approximation
of the concrete machine’s semantics. While doing so, we establish a Galois con-
nection between the concrete operational semantics and the abstract ones which
we use for formulating and proving soundness of the resulting static analysis.

5.1 Preliminaries

We first present some standard notions of abstract interpretation required for
the remainder of this section.

Definition 5.1.1. A join-semilattice, denoted ⟨A,≤,⊔⟩ is a partially ordered
set ⟨A,≤⟩ with a least-upper bound ⊔ defined for every two elements in the set.

Definition 5.1.2. A Galois connection between two partially ordered sets A

and B is a pair of functions α and γ, denoted as ⟨A,≤A⟩ −−−→←−−−α
γ
⟨B,≤B⟩, such

that:

∀a ∈ A : a ≤A γ(α(a))

Definition 5.1.3. An abstract function f̂ is said to be sound with respect to its
concrete counterpart f iff:

∀a ∈ Â : αB̂(f(a)) ≤B̂ f̂(αÂ(a))

where αx is the abstraction function corresponding to the partially ordered
set x.

In what follows, we will overload the notation by using the same α and γ
functions for different value types whenever no ambiguities can arise. In ambigu-
ous contexts, a subscript will be used to differentiate the intended function from
other potential candidates.
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5.2 Standard Component-Wise Abstractions

Before abstracting the components of our abstract machine, we apply a transfor-
mation that store-allocates continuations instead of keeping them in a stack. The
details of this transformation are available in the online appendix3. We continue
the abstraction process on this version of the concrete machine.

Figure 5 depicts an abstraction of the concolic machine. The control compo-
nent of the abstract machine is adapted so that each continuation is applied to
an abstract value instead of a concrete one. The machine’s stores are also ab-
stracted, so that they form mappings from abstract addresses to abstract values
or to sets of abstract continuations. The abstraction of a continuation is defined
as a straightforward point-wise abstraction of its components. More specifically,
the program continuation for implementing let is adapted to include abstract
environments and abstract addresses instead of concrete ones. Furthermore, the
failure continuation is adapted to include an abstraction of the path constraint.
Both continuations are adapted so that they refer to an abstract continuation
address as their next continuation. Abstractions for these addresses are omit-
ted from this paper, as any sound abstraction will do (e.g., one that limits the
number of calling contexts).

Finally, the model component (M) and the path constraint component (φ)
are abstracted to obtain a fully abstracted concolic machine. To do so, we render
symbolic formulae, symbolic expressions, and symbolic variables abstract, as
discussed in the following sections.

ς̂ ∈ Σ̂ ::= ⟨ĉ, σ̂, âκ, κ̂, âψ, ψ̂, M̂ , ĉtx, φ̂, V̂ ⟩ ĉ ∈ ̂Control ::= ev(e, ρ̂) | ap(v̂)
âκ ∈ K̂Adr ::= . . . | Hlt âψ ∈ F̂Adr ::= . . . | Hlt ctx is a finite abstraction of the context

φ̂ ∈ ̂Formula M̂ ∈ M̂odel κ̂ ∈ ̂KontSto ::= K̂Adr → P(Continuation)

ψ̂ ∈ F̂ailSto ::= F̂Adr → P(FailureContinuation) v̂ ∈ V̂alue = ̂ProgramValue × ̂SymbolicValue

ρ ∈ ̂Environment = Identifier → V̂alue V̂ ∈ V̂isited

Fig. 5: Abstraction of the state space as a component-wise abstraction of the
concrete state space

5.3 Abstracting Symbolic Representations

As concrete symbolic variables have the same representation as concrete ad-
dresses, any suitable address abstraction can also be used for their abstraction.
However, since the abstraction of symbolic variables is central to our approach
we define their representation explicitly below.

3 https://doi.org/10.5281/zenodo.16568308

https://doi.org/10.5281/zenodo.16568308
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Definition 5.3.1. Abstract symbolic variables are constructed from a program
label and a finite abstraction of a calling context.

x̂ ∈ ̂SymbolicVariable = Label × Ĉontext

The power set of these abstract symbolic variables trivially forms a join-
semilattice with the subset relation as its partial order, and the union as its
least upper bound. Having defined this lattice, we define a Galois connection
between the concrete and abstract representations of symbolic variables.

Definition 5.3.2. P(SymbolicVariable) and P( ̂SymbolicVariable) form a Ga-

lois connection ⟨P(SymbolicVariable),⊆⟩ −−−−→←−−−−
αx

γx ⟨P( ̂SymbolicVariable),⊆⟩, where
α and γ are defined as follows:

αx(SV ) =
⋃

(ℓ,ctx)∈SV
{(ℓ, α(ctx))} γx(ŜV ) =

⋃
(ℓ,ĉtx)∈ŜV

{(ℓ, ctx) | ĉtx ⊆ ctx}

It is important to note that a single abstract symbolic variable could corre-
spond to multiple concrete symbolic variables. This is because the abstraction
of the context makes a possibly infinite concrete context finite, resulting in a po-
tentially infinite number of corresponding concrete symbolic variables. The same
does not hold for the reverse case: abstractions of concrete symbolic variables
only result in a single abstract symbolic variable as witnessed by the usage of
singleton sets in the definition of the abstraction function.

Next, we define a lattice of symbolic expressions (ê ∈ ̂SymbolicValue). This
lattice is defined as a flat lattice that consists of sym(e) as its elements, and fresh
as its top element with the usual partial-ordering and least-upper bound.

Having defined the partial ordering relation, and having established that this
representation forms a join-semilattice, we define a Galois connection between
the power set of concrete symbolic expressions P(SymbolicValue) and the ab-

stract symbolic expressions ̂SymbolicValue defined earlier.

Definition 5.3.3. The sets P(SymbolicValue) and ̂SymbolicValue form a Ga-

lois connection ⟨P(SymbolicValue),⊆⟩ −−−→←−−−α
γ
⟨ ̂SymbolicValue,≤⟩ where α and γ

are defined as follows:

α(S) =
⊔
e∈S

αe(e) γ(⊥) = {}

αe(n) = sym(n), n ∈ N γ(sym(n)) = {n}, n ∈ N
αe(b) = sym(b), b ∈ B γ(sym(b)) = {b}, b ∈ B
αe(x) = sym(αx(x)) γ(sym(x)) = γ(x)

γ(fresh) = SymbolicValue
αe(op(e1, . . . en)) = op(α(e1, . . . , α(en)) γ(sym(op(ê1, . . . , ên))) = {op(e1, . . . , en) | ei ∈ γ(êi)}

Intuitively, the partial ordering is guided by the concrete symbolic expres-
sions corresponding to an abstract symbolic expression. For instance, an abstract
expression e corresponds to the singleton set of concrete expression e, whereas
fresh corresponds to all possible symbolic expressions. The choice for represent-
ing this abstract value using a fresh symbolic variable is not a coincidence. For
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example, a symbolic variable y0 would subsume a symbolic expression x0 > 0 as
the former evaluates to any value while the latter evaluates to a boolean value
after computing the inequality with zero.

Other, more precise abstractions can also be defined for symbolic expres-
sions. However, for simplicity of our presentation, we chose to represent abstract
symbolic expressions as a flat lattice consisting of a bottom element, a concrete
symbolic expression, and a fresh symbolic variable.

5.4 Path Constraints Abstractions

In the previous section, we defined abstractions for symbolic expressions. These
abstractions are used for abstracting the store and its concolic values as well as
the symbolic expressions in the path constraint. In this section, we discuss how
abstract symbolic expressions are integrated with a symbolic path constraint in
order to obtain an abstract path constraint.

Definition 5.4.1. An abstract path constraint is formed by an abstract formula
̂Formula which is defined as follows:

φ̂1, φ̂2 ∈ ̂Formula ::= φ̂1 ∧ φ̂2 | ¬ê | ê | ∅

Thus, abstract formulae share the same structure as their concrete counter-
part but use abstract symbolic expressions as their constraints. A natural partial
order on both concrete and abstract formulae can be defined using the logical
implication (⇒). Consequently, the least-upper bound can be defined as the least
generalization such that if φ1 ⊔ φ2 = φ3 then φ1 ⇒ φ3 and φ2 ⇒ φ3.

Definition 5.4.2. Concrete formulae from Formula form a Galois connection

with abstract formulae ̂Formula denoted by ⟨Formula,⇒⟩ −−−→←−−−α
γ
⟨ ̂Formula,⇒⟩,

where α and γ are defined as follows:

α(φ1 ∧ φ2) = α(φ1) ∧ α(φ2) γ(φ̂1 ∧ φ̂2) =
⊔

φ1∈φ̂1

φ2∈φ̂2

φ1 ∧ φ2

α(¬e) = ¬α(e) γ(¬ê) =
⊔
{¬e | e ∈ γe(ê)}

α(e) = αs(e) γ(ê) =
⊔
{e | e ∈ γe(ê)}

5.5 Satisfiability Checking and Abstract Counting

Since an abstract formula corresponds to one or more concrete formulae, satisfi-
ability checking of these formulae also need to be adapted. To this end, we define
a translation function that translates abstract formulae into SMT formulae that
can be used in any SMT solver.
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Imprecise Translations The definition of an SMT formula is depicted below.
The structure of an SMTFormula largely corresponds to the structure of concrete
and abstract formulae, except that symbolic variables are generated from the set
of natural numbers (N) instead of program locations and their context.

φ′
1, φ

′
2 ∈ SMTFormula ::= φ′

1 ∧ φ′
2 | x′ | φ′

1 | ¬φ′
1 x′ ∈ SMTVariable ::= xn, n ∈ N

Below we define the translation function from abstract symbolic formulae to
SMT formulae. We assume an infinite pool of natural numbers shared between
all invocations of translate. A selection from this pool is denoted by n ∈ N.

translate :: ̂Formula → SMTFormula translate(φ̂1 ∧ φ̂2) = translate(φ̂1) ∧ translate(φ̂2)
translate(sym(¬e)) = ¬translate(e) translate(sym(n)) = n, n ∈ N
translate(sym(b)) = b, b ∈ B translate(sym(x)) = xn, n ∈ N
translate(⊥) = ∅ translate(fresh) = xn, n ∈ N

Note that the translation of abstract symbolic variables to SMT variables
requires a unique SMT variable for every occurrence of an abstract symbolic
variable, even if these abstract symbolic variables are identical. This is because
abstract symbolic variables originate from input statements, and are allocated
by combining the location of the input statement in the source program with
an abstraction of the current calling context of the program execution. Thus,
if such input statements repeat in the same execution, multiple concrete input
statements could result in the same abstract symbolic variable, while getting
a unique symbolic variable in the concrete execution. Therefore, each symbolic
variable needs to be translated to a unique SMT variable.

Precise Translations with Abstract Counting The above translation is
suboptimal as every occurrence of an abstract symbolic variable is translated to
a distinct SMT variable. The code example depicted below illustrates in which
situations this suboptimal translation is warranted.

y = 0

while True:

y = x

x = input()

if x > y: error

In this example, the error is reachable as the user input from the previous loop
iteration could be smaller than the current one. To detect is error, a concrete
concolic execution engine generates an infinite number of symbolic variables
for the input statement on line 4. To render the abstract execution finite, the
abstracted version of the concolic execution engine associates a single abstract
variable with that input statement, yielding the following path constraint at the
error statement after two iterations of the while loop (where x0 is an abstract
symbolic variable associated with the input statement on line 4).
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x0 > x0 ∧ x0 > x0

In this case, the abstract symbolic variable x0 cannot refer to the same con-
crete symbolic variable as the path constraint would become unsatisfiable. There-
fore, the imprecise translation is warranted when abstract symbolic variables
refer to multiple concrete symbolic variables.

However, abstract symbolic variables can usually occur more than once in a
symbolic path constraint, as illustrated by the code listing depicted below. An
abstract concolic execution of this program yields to following path constraint
at the error statement: x0 > 5∧ x0 < 4, which is clearly unsatisfiable. However,
since all occurrences of abstract symbolic variables are replaced by fresh onces,
the formula becomes satisfiable again, resulting in the imprecise conclusion that
the error statement is reachable.

x = input ()

if x < 4:

if x > 5: error

This problem arises from the absence of information regarding the cardinal-
ity of a symbolic variable. To render the translation more precise, we propose
to conservatively approximate this cardinality by counting the number of con-
crete symbolic variables corresponding to an abstract symbolic variable. This
approach is commonly referred to as abstract counting [15], and has been used
for soundly implementing strong updates. We apply this same concept for deter-
mining whether a symbolic variable corresponds to zero, one or more concrete
symbolic variables.

Definition 5.5.1. An abstract count is defined as follows:

c ∈ AbstractCount ::= 0 | 1 | ∞

The elements of AbstractCount form a join-semilattice, where the partial
order is defined as 0 ≤ 1 ≤ ∞ and the least-upper bound as 0⊔ x = x (idem for
the symmetric case), 1 ⊔ 1 = 1 and x ⊔∞ = ∞ (idem for the symmetric case).
Having defined a lattice structure, we can define an abstract operation called inc
which increases the abstract count by one.

inc(0) = 1 inc(1) =∞ inc(∞) =∞

To determine the abstract count for each symbolic variable, we introduce
an abstract count mapping C which maps symbolic variables to their abstract
count. The mapping is initially set to zero for every abstract symbolic variable.
The definition of this mapping is depicted below:

C ∈ AbstractCountMap = ̂SymbolicV ariable→ AbstractCount

Mapping C is used for rendering the translation function more precise. In the

definition below, we assume that a mappingN : ̂SymbolicVariable → SMTVariable
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exists and is updated accordingly when SMT variables are generated from ab-
stract symbolic variables. We denote a successful lookup from this mapping using
N (x). The definition below only depicts the translation of symbolic variables, as
the translation of other types of formulae remains identical, except for passing
the abstract count mapping alongside the formula that is being translated.

translate(x, C) =

{
N (x) if C(x) = 1
xn, n ∈ N otherwise

The translation function handles the satisfiability checking in one direction:
the direction from the analysis to the SMT solver. A concolic execution engine,
however, requires bidirectional communication by constructing a model satisfy-
ing the path constraint and feeding it back to the next concolic execution.

To this end, we define an inverse function getModel (depicted below), to
compute an abstract model from the SMT model. We also define a mapping
from SMT variables to their original abstract symbolic variables so that an
abstract model can be computed from the SMT model.

SMTModel = SMTVariable → ProgramValue N−1 :: SMTVariable → ̂SymbolicVariable

getModel :: SMTModel ×N−1 → M̂odel getModel(M,N) =
⊔
x∈M

[N(x) 7→M(x)]

As every abstract symbolic variable can have multiple corresponding SMT
variables, all corresponding SMT variables are joined into a single abstract sym-
bolic variable, resulting in an over-approximation of the concrete model.

5.6 Abstracting the Visited Set

The visited set is an important component in the concrete semantics as it en-
sures that the concrete concolic execution engine does not perpetually alternate
between same branches of the program. This visited set needs to be abstracted
too, as it would otherwise lead the abstract interpreter to conclude that the
concolic execution never finishes, resulting in a ⊥ value.

Definition 5.6.1. An abstracted visited is formed by a has-visited and a may-
visited set. The former corresponds to the branches that have been visited, while
the latter corresponds to the branches that may have been taken.

V̂ ∈ V̂ isited ::= P(Formula)× P(Formula)

Definition 5.6.2. The least upper bound ⊔ and partial ordering ≤ for V̂isited
is defined as follows.

(h1,m1) ≤ (h2,m2) ≜ h1 ⊇ h2 ∧m1 ⊆ m2 (h1,m1) ⊔ (h2,m2) ≜ (h1 ∩ h2,m1∆m2)

where m1∆m2 is the symmetric union of m1 and m2.
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When computing the least upper bound of two states of the concolic machine,
paths visited in both states end up in the has-set while the others are kept in the
may-set. This leads us to the following definition of the abstract in operation.

Definition 5.6.3. The abstract in operation is defined as follows.

in(e, (h,m), aψ1, aψ2) =

{aψ1, aψ2} if e ∈ m{aψ1} if e ̸∈ h ∧ e ̸∈ m
{aψ2} if e ∈ h ∧ e ̸∈ m

We also define an abstract operation to add elements to the visited set.

Definition 5.6.4. The operation add is defined as follows:

add(e, (h,m)) = ({e} ∪ h,m)

5.7 Abstract Stepping Relation

Having defined an abstraction of the standard CESK machine components, an
abstraction of symbolic expressions and their formulae and a translation to SMT
formulae, we can put everything together and define an abstract version of the
small-stepping relation ⇝̂ on the concolic machine (depicted in fig. 6).

Atomic evaluation remains largely unchanged except that literals are now in-
jected in the abstract domain (through their abstraction functions α) for program
and symbolic values. All rules are adapted to take the abstract count mapping C
into account. This mapping propagates mostly unchanged through the stepping
relation except for the [Input] and [ST-Backtrack] rules. The [Input] rule
“allocates” a fresh abstract symbolic variable based on the source location of
the matching input statement and the current abstract program context. The
abstract count mapping is then updated to take this allocation into account by
applying the inc meta-function to the current abstract count for that abstract
symbolic variable. [ST-Backtrack’] resets the abstract count mapping as the
program execution is restarted.

The remaining rules also need to take the abstractions of the continuation
stores into account. Rules [ST-IfTrue’] and [ST-IfFalse’] perform weak up-
dates on both the continuation and the value store. This weak update is per-
formed by joining the new value at a specified address with its old value. While
our semantics does not preclude strong updates, incorporating them would re-
quire additional changes to the abstract count mapping. Finally, rule [ST-Backtrack’]
is updated to first translate the abstract path condition to one suitable for the
model function and then translating its results back into an abstract model using
the getModel function. The new modelM ′ is joined with the old modelM so that
the number of possible abstract models remain finite. Next, we formulate and
prove soundness of our abstract concolic semantics and prove that the resulting
analysis terminates on any program input.

Theorem 5.7.1. ⇝̂ is a sound over-approximation of⇝. That is, for every ς ⇝
ς ′ there exists an approximation ς̂ ⇝̂ ς̂ ′given that α(ς) ⊑ ς̂ such that α(ς ′) ⊑ ς̂ ′.
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(v, v′) = lookupModel(M, x, v) x = fresh(ℓ(input), ctx)

⟨ev(input, ρ), σ, aκ, κ, aψ, ψ, v, ctx,M,C, φ, V̂ ⟩

⇝̂⟨ap((v, x)), σ, aκ, κ, aψ, ψ, v′, ctx,M, C[x 7→ inc(C(x))] , φ, V̂ ⟩

Input

JaeK(ρ, σ) ∋ (true, s) φt = φ ∧ s φf = φ ∧ ¬s

a
′
ψ ∈ in(φf , V̂ , alloc(ℓ(ae)), aψ) ψ

′
= ψ

′
[a

′
ψ 7→ ψ(a

′
ψ) ⊔ { branch(φf ) :: aψ } ]

⟨ev(if ae e1 e2, ρ), aκ, σ, κ, aψ, ψ, v, ctx,M, C , φ, V̂ ⟩

⇝̂⟨ev(e1, ρ), σ, aκ, κ, a′ψ, ψ
′
, v, ctx,M, C , φt, add(φf , V̂ ) ⟩

ST-IfTrue’

JaeK(ρ, σ) ∋ (false, s) φt = φ ∧ s φf = φ ∧ ¬s
a
′
ψ = in(φt, V̂ , alloc(ℓ(ae)), aψ) ψ

′
= ψ

′
[a

′
ψ 7→ ψ(aψ) ⊔ {branch(φt) :: aψ}]

⟨ev(if ae e1 e2, ρ), σ, aκ, κ, aψ, ψ, v, ctx,M, C , φ, V̂ ⟩

⇝̂⟨ev(e2, ρ), σ, aκ, κ, a′ψ, ψ
′
, v, ctx,M, C , φf , add(φt, V̂ ) ⟩

ST-IfFalse’

ST-Backtrack’

M
′
= getModel(model(translate(φ))) branch(φ, x′) :: a

′
ψ ∈ ψ(aψ)

⟨ap(v), σ,Hlt, κ, aψ, ψ, v, ctx,M, C , φ
′
, V̂ ⟩⇝̂⟨ev(e0, ρ0), σ0,Hlt, ∅, a′ψ, ψ, v′, ∅, M⊔ M

′
, ∅ , ∅, V̂ ⟩

Fig. 6: Abstract stepping relation ⇝̂, highlighted in grey are the parts changed
in comparison to the concrete stepping relation. Rules for atomic evaluation,
[St-Let1] and [St-Let2] are omitted for brevity but are available in the online
appendix.

Proof. Assuming that there exists a concrete transition, ς ⇝ ς ′, we show by case
analysis on the applied rules that there is an abstract transition ς̂ ⇝̂ ς̂ ′ so that
the proposition α(ς ′) ⊑ ς̂ ′ holds for any given α(ς) ⊑ ς̂. A full version of the
proof is available in the online appendix.4 ⊓⊔

Theorem 5.7.2. Termination. Êval always terminates.

Proof. Proof by analysis of the cardinality of each state-space component. A full
version of the proof is available in the online appendix. ⊓⊔

6 Variations on the Analysis

In contrast to the state of the art in soft contract verification, the systematic
abstraction of a concolic execution machine enables a number of variations on the
resulting abstract machine. These variations either render the analysis results
more precise, or improve the analysis’ performance. To demonstrate the possible
variations, we take a similar approach as in Glaze et al. [11] and vary the machine
by global widening and per-state widening.

4 https://doi.org/10.5281/zenodo.16568308

https://doi.org/10.5281/zenodo.16568308
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6.1 Global Widening

One variation of the machine is to widen its components so that they become
shared between all program states. More specifically, all machine components
can be widened except for the control component, the addresses for the top
of the failure and regular continuation stack, and the program and iteration
context. One could also widen path constraint so that it becomes shared between
all program states, which leads to a whole-program invariant. However, since
the path constraints across a whole program can differ substantially, the most
generic path constraint usually is the empty one. The model, on the other hand,
can be widened to a global version since its symbolic variables are indexed by
the path constraint for which the model was computed. Widening the model to
be shared with all program states therefore does not impact its values since its
values would be joined anyway. Finally, widening the abstract counts leads to
imprecise information for the count of each symbolic variable. Every abstract
count will be widened to∞ causing each symbolic variable in the path condition
to be translated into a unique SMT variable.

The widened state space Σ′, consisting of a set of small step states, and
the shared components, is depicted below. The abstracted evaluation function

Êval is adapted to operate on these widened states by iterating over each of its
small-step states, lifting them to a non-widened small-step state, applying the
evaluation relation and joining its results together. Note that this transformation
does not impact the formal semantics.

ς ∈ Σ ::= ⟨c, aκ, aψ, ctx, φ⟩
Σ′ = P(Σ)× (Store × ContSto × FailSto ×Model)

lift(⟨c, aκ, aψ, ctx, φ⟩, (σ, κ, ψ,M)) = ⟨c, σ, aκ, κ, aψ, ψ,M, ctx, φ⟩

Êval(Σ,S) = Σ ⊔
⊔
ς∈Σ

lift(ς,S)⇝̂ς′

lift(ς′′,S′)=ς′

({ς ′′}, S′)

Conclusion This transformation shows that our abstract machine can
be easily adapted to globally widen its components. Although this global
widening drastically decreases the time complexity of resulting analysis, we
argue against widening the symbolic execution components of the machine,
as they will decrease the precision of its results.

6.2 Per-state Widening

A more practical form of widening is per-state widening. This form of widening
entails that some analysis components are passed onto the next analysis states
instead of making them part of the next analysis state itself. The widened state
space Σ′, depicted below, consists of pairs of which the second element is a
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mapping between abstract states ς ∈ Σ and their widened components. The

abstract evaluation function Êval is adapted accordingly.

ς ∈ Σ = ⟨c, aκ, aψ, ctx,PC ⟩ Σ′ = P(Σ)× S
S = Σ → (Store × ContSto × FailSto ×Model)

lift1(⟨c, aκ, aψ, ctx, φ⟩, (σ, κ, ψ,M)) = ⟨c, σ, aκ, κ, aψ, ψ,M, ctx, φ⟩
lift2(ς, S) = lift1(ς, S(ς))

Êval(Σ,S) = Σ′ ∪
⊔
ς∈Σ

lift2(ς,S)⇝̂ς
′

lift1(ς
′′,S′)=ς′

({ς ′′}, S[ς ′′ 7→ S′])

This reduces the number of states drastically, as each modification to the
shared components no longer leads to a different program state.

Having defined the widened transfer function, we can assess its impact on the
precision of the analysis result. Widening per state usually results in widening
of components in the presence of loops. This means that components such as the
path constraint get widened to loop iterations resulting in a loop invariant. The
abstract count mapping gets similarly widened to each loop iteration, resulting in
a∞ count for symbolic variables that get produced in a loop. Again, the results
of the model are not affected by these changes as they are already uniquely
identified by their symbolic variable combined with the path constraint for which
the model was computed.

Conclusion: Again, our abstract machine can be easily adapted to sup-
port per-state widening. This widening approach is preferable over globally
widening the symbolic components, as per-state widening naturally leads
to widening at loop-heads, which is preferable is most cases.

7 Evaluation

We evaluate our approach by instantiating it for the problem of soft contract
verification [16,17,24]. In this evaluation, we instantiate our abstract concolic
execution engine for soft contract verification. To this end, contract specifications
are compiled into low-level assertions that can be checked by the machinery of
our approach. We compare our approach to traditional soft contract verification
on a dataset provided by the state of the art. This dataset consists of a number
of Racket programs annotated with contract specifications. All programs in this
dataset are considered to be safe (e.g., do not contain any contract violations)
by the original authors [16], and we also manually verified that this was indeed
the case. We use this ground truth to compare our approach to traditional soft
contract verification by measuring the number of unverified contracts.
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Listing 2 The rules central to the translation from CFCP to ordinary λ-calculus.

monj,k (flat v1) v2 → if (v1 v2) v2 (blame j)

monj,k (κ1 → κ2) (λx.e) → (λx.monj,k κ2 (e[x 7→ monk,j κ1 x]))

7.1 Instantiating Soft Contract Verification

Findler et al. [14] propose a contract system for specifying the expected be-
haviour of higher-order functions. In the listing shown below, we again depict
a contract for the square function, stating that its input should be a number
while guaranteeing that its output will be positive:

def square(x: number ?): positive? = return x*x

In the language proposed by Findler et al., called CPCF, this code example
would be translated into the following term:

letrec square = monj,k (number?→ positive?) (λx.(x ∗ x))

The contract-annotated function is transformed to a λ-expression containing
the original parameters of the function and its body. Furthermore, the contract
is translated to a contract monitor, mon, which attaches the contract to the
function so that when the function is applied the number? contract is checked
on the input value and the positive? contract is checked on the output value.

The translation of these contract systems into the language used in our ap-
proach is straightforward and partially given by Dimoulas et al. [5,6]. Listing 2
depicts the rules for translating CFCP terms to ordinary λ-calculus terms. These
rules can then be applied recursively to obtain a contract-free program that can
be analysed using our approach. The full translation is a bit more involved, as it
also translates Racket-specific constructs such as contract-out and contracts
on structs, but their translations are omitted here for brevity5

7.2 Implementation

We implemented our approach in Monarch [25], a framework for static analy-
sis through abstract interpretation written in Haskell. This implementation is
publicly available as a replication package at https://doi.org/10.5281/
zenodo.16410896. The implementation follows the formalization for the most
part, but extends the analysed language with support for strings, heap-allocated
pairs, and vectors. Moreover, the analysed language also supports functions ac-
cepting multiple arguments. It uses a constant propagation domain as the ab-
stract domain for program values, and power-set lattices for abstracting pointers
and closures. Z3 is used an SMT solver.

5 The full translation is included in our replication package.

https://doi.org/10.5281/zenodo.16410896
https://doi.org/10.5281/zenodo.16410896
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7.3 Experimental Setup

To measure the performance and accuracy of our approach, we run our analysis
on a collection of benchmark programs from existing soft contract verification
work [24], and we compare the number of false positives detected by our ap-
proach to the number of false positives detected by related work. The ground
truth is constructed by looking at benchmark programs that contain no contract
violations, making every detected contract violation a false positive.

Table 1: An overview of the set of benchmark programs. Depicted are the number
of lines of code (according to sloc) in the original and translated program.

Name Original Processed Name Original Processed

games-snake 134 4525 mochi-zip 13 2684
games-tetris 250 6690 sergey-blur 12 2570
games-zombie 230 5110 sergey-eta 8 2543
mochi-fold-div 11 2657 sergey-kcfa2 10 2563
mochi-hors 12 2613 sergey-kcfa3 15 2573
mochi-hrec 8 2648 sergey-loop2 18 2593
mochi-l-zipunzip 15 2712 sergey-mj09 12 2560
mochi-map-foldr 9 2707 sergey-sat 28 2675
mochi-mappend 10 2689 softy-append 6 2595
mochi-mem 11 2695 softy-cpstak 21 2637
mochi-mult 7 2645 softy-last-pair 5 2573
mochi-neg 10 2610 softy-last 13 2626
mochi-nth0 11 2608 softy-length-acc 8 2589
mochi-r-file 25 2719 softy-length 6 2583
mochi-r-lock 8 2609 softy-member 6 2579
mochi-reverse 9 2620 softy-recursive-div2 8 2598
mochi-sum 7 2581 softy-subst 9 2617

softy-tak 9 2616

We first translate the benchmark programs to ANF, compile each contract
down to λs in the manner described above, and insert function calls to each
contracted function. A summary of the resulting set of programs is depicted in
Table 1. The translated programs are larger than the original programs because
they are translated into an ANF form, include a prelude of primitive functions
annotated with contracts and some built-in contracts, and have the contract
specifications compiled down into base-level assertions. To measure the precision
of the analysis, the analysis is executed and the number of unique contract
violations is counted.

The evaluation features two configurations of the analysis: a version, called
“local” with no widening mirroring our formalization closely, and a version with
per-state widening called “flow”. Both configurations are instantiated with k-
CFA context sensitivity for function calls, and with path constraints as its
branching sensitivity. In the evaluation, we compare multiple values for k bounded
to 5 call-sites, and measure whether it has an impact on the analysis precision.
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For comparing the precision and performance of our approach with the state
of the art, we replicate the results from Vandenbogaerde et al. [24] by running
their replication package on the aforementioned benchmarks and measuring their
running time and precision. For measuring the performance, we repeated the
analysis of each benchmark program 20 times with a timeout of 15 minutes and
report its summary statistics. The benchmarks are executed on a AMD EPYC
9384X machine having 12 GiB of available memory. No limitations on garbage
collection have been imposed.

7.4 Results

Precision Results Table 2 depicts the precision results of our benchmark
programs. Benchmark programs for which all configurations result in either a
timeout, or an error (in case of missing features in the analysed programming
language), are omitted from the table. The omitted benchmarks comprise 11
out of the 35 benchmarks from the benchmark set. The state of the art did
not time out on the omitted benchmarks. The table is split into three parts.
The first part depicts the number of false positives found in the state-of-the-art
approach [24], the second and third part depict the “flow” and “local” config-
urations (cf. above). These configurations are further subdivided into different
values for k, which a tunable parameter changing how many function calls should
be retained in the calling context. Higher values of k typically result in a higher
precision at the cost of performance. However, as we noticed in the benchmarks
such as sergey eta, a higher precision could also lead to improved performance
as abstract values grow smaller due to the increased precision of the analysis.

Table 2: Precision results for each benchmark program. Cells containing a ∞
indicate a timeout for that combination of benchmark and configuration.

[24] Flow Local
k 0 1 2 3 4 5 0 1 2 3 4 5
Name

mochi fold-div 5 4 1 1 1 1 1 ∞ ∞ ∞ ∞ ∞ ∞
mochi hors 2 3 3 3 3 3 3 ∞ ∞ ∞ ∞ ∞ ∞
mochi hrec 5 6 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mochi l-zipunzip 7 2 2 ∞ ∞ ∞ 2 ∞ ∞ ∞ ∞ ∞ ∞
mochi map-foldr 1 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mochi mappend 4 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mochi mem 20 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mochi mult 5 4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mochi neg 4 4 4 4 4 4 4 ∞ ∞ ∞ ∞ ∞ ∞
mochi nth0 3 4 3 3 3 3 3 ∞ ∞ ∞ ∞ ∞ ∞
mochi r-file 1 0 0 0 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
mochi r-lock 2 4 4 4 4 4 4 ∞ ∞ ∞ ∞ ∞ ∞

[24] Flow Local
k 0 1 2 3 4 5 0 1 2 3 4 5
Name
mochi sum 4 0 0 0 0 0 0 0 0 0 0 0 0
sergey eta 0 0 0 0 0 0 0 0 0 0 0 0 0
sergey kcfa2 0 0 0 0 0 0 0 0 0 0 0 0 0
sergey kcfa3 0 0 0 0 0 0 0 0 0 0 0 0 0
sergey mj09 0 0 0 0 0 0 0 0 ∞ 0 0 0 0
sergey sat 0 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
softy append 3 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
softy cpstak 3 3 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
softy last 0 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
softy length 6 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
softy length-acc 6 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
softy tak 0 3 3 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

The results show that the “local” configuration of the analysis is barely use-
able with only 5 out of the 24 benchmarks terminating before the timeout is
reached. This outcome is expected, as the “local” configuration results in an
exponential number of states, as has been observed in prior work on AAM [11].
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The results for the “flow” configuration are more interesting, as they are more
likely to terminate before the timeout is reached. We found that in 10 out of
the 24 benchmark programs our approach reports fewer false positives than the
state-of-the-art approach. In 9 out of the 24 benchmark programs, the number
of reported false positives is the same as the state-of-the-art approach, while for
5 benchmark programs, our approach reports more false positives.

Conclusion: The results show that our approach is able to achieve a higher
or equal level of precision in the majority of tested benchmark programs,
at the cost of being slower than existing approaches and failing to analyse
10 out of the 34 benchmark programs within a time budget of 15 minutes.

Table 3: Performance results for each benchmark program. Each cell contains the
mean running time or∞ indicating a timeout for that combination of benchmark
program and configuration. For each combination, the coefficient of variation
never exceeds 21.9%, however in 75% of the combinations never exceed 1.3%.

State-of-the-art Flow Local
0 1 2 3 4 5 0 1 2 3 4 5

Name

mochi fold-div 0.059s 9.10s 2.32s 2.34s 2.35s 2.37s 2.38s ∞ ∞ ∞ ∞ ∞ ∞
mochi hors 0.063s 39.65s 99.83s 289.14s 168.42s 492.21s 791.92s ∞ ∞ ∞ ∞ ∞ ∞
mochi hrec 0.055s 834.24s ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mochi l-zipunzip 0.074s 146.97s 1566.51s ∞ ∞ ∞ 525.16s ∞ ∞ ∞ ∞ ∞ ∞
mochi map-foldr 0.061s 1104.61s ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mochi mappend 0.055s 773.74s ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mochi mem 1.239s 498.28s ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mochi mult 0.058s 347.69s ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
mochi neg 0.043s 132.16s 405.17s 774.56s 1135.49s 1251.37s 1503.50s ∞ ∞ ∞ ∞ ∞ ∞
mochi nth0 0.033s 56.58s 78.22s 81.52s 83.02s 83.73s 86.27s ∞ ∞ ∞ ∞ ∞ ∞
mochi r-file 0.062s 14.53s 62.26s 397.81s 672.42s 1588.63s ∞ ∞ ∞ ∞ ∞ ∞ ∞
mochi r-lock 0.076s 30.29s 64.99s 90.67s 103.44s 119.79s 154.05s ∞ ∞ ∞ ∞ ∞ ∞
mochi sum 0.047s 0.19s 0.18s 0.17s 0.18s 0.18s 0.18s 0.15s 0.16s 0.16s 0.16s 0.16s 0.16s
sergey eta 0.002s 0.44s 0.27s 0.19s 0.19s 0.19s 0.19s 1.52s 0.33s 0.19s 0.19s 0.19s 0.19s
sergey kcfa2 0.045s 1.13s 1.69s 1.98s 1.57s 1.45s 1.25s 8.52s 111.47s 36.05s 7.71s 7.83s 4.18s
sergey kcfa3 0.035s 1.43s 2.64s 2.02s 1.98s 2.34s 2.52s 12.33s 624.24s 107.40s 251.81s 105.78s 45.88s
sergey mj09 0.020s 1.69s 3.43s 0.20s 0.20s 0.20s 0.20s 121.53s ∞ 0.21s 0.21s 0.22s 0.22s
sergey sat 0.039s 170.62s 979.98s ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
softy append 0.039s 887.45s ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
softy cpstak 0.084s 151.59s 1291.34s ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
softy last 0.040s 1241.82s ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
softy length 0.059s 708.55s ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
softy length-acc 0.082s 764.85s ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
softy tak 0.059s 92.14s 1225.51s 1673.31s ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Performance Results Table 3 depicts the running times for each combina-
tion of benchmark programs and configurations. The results show that our ap-
proaches is able to analyse each program in a few minutes. More interestingly,
different values of k seem to increase and sometimes decrease the running times
of the analysis. In the case of sergey kcfa the resulting difference is quite pro-
nounced since the benchmark program is designed to decrease running times
with higher values of k. Others, such as mochi neg only increase their running
times with higher values of k. We conclude that impact of k is highly dependent
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on the benchmark program. Again, we observe that the “local” configuration is
outperformed by the “flow” configuration. The results show that the “flow” con-
figuration outperforms the “local” configuration by several orders of magnitude.

Comparing our approach with the state-of-the-art approach for soft contract
verification, we observe that our approach is several orders of magnitude slower,
but still takes only a couple of minutes to complete. This is because the state-of-
the-art approach uses a bespoke compositional analysis design for their analysis.
Since their approach is compositional, functions can be analysed in isolation
regardless of on which paths calls to those functions occur. This substantially
reduces the size of the state space, but reduces the precision of the analysis
since function calls are no longer analysed in a path sensitive manner. More-
over, while doing so the state-of-art approach chooses an ad-hoc configuration
for its abstract machine, and does not consider abstractions for its path con-
straint, symbolic variables and expressions. Instead, when detecting loops, the
state-of-art approach simply discards the path constraint instead of widening it
to the least general constraint. A similar phenomenon occurs for its symbolic
expressions which are simply discarded instead of widened.

However, one of the strengths of our approach is that it is amenable to a
myriad of optimizations proposed in the AAM literature, ranging from store
deltas [11], to modularization [18], parallelization [22], and abstract garbage col-
lection [7,10]. In Section 6 we already demonstrated global store widening, a
common optimization in AAM literature. This shows that these common opti-
mizations can be easily adapted to our context.

Timed-out benchmarks. Compared to the terminated benchmarks, the timed-
out ones are typically larger and contain more complex contracts. For instance,
the games benchmarks contain contracts on more complex nested data struc-
tures for representing elements of the game. Since our analysis is path-sensitive,
these constraints often result in an exponentially larger state space. Again, other
performance-enhancing techniques from the AAM literature might be used to
reduce this state space further.

Conclusion: The results demonstrate that most benchmark programs can
be analysed within a few minutes. They also highlight the importance of
incorporating widening techniques, as the “local” approach alone proves
to be insufficient. Compared to the state-of-the-art, our approach achieves
higher precision, though at the expense of performance. Our approach is the
first to systematically abstract concolic execution, and explore its different
configurations. Thus, it remains amenable to a myriad of AAM optimiza-
tions that have been successful in the past for rendering other AAM -based
analysis techniques scalable.

8 Related Work

State Merging. Sen et al. [21] propose a state merging technique for reducing
the path explosion problem in dynamic symbolic execution. They do so by merg-
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ing multiple DSE states together into a value summary therefore reducing the
number of states to be explored. Moreover, these summaries allow redundant ex-
ecution paths to be pruned reducing the state space even more. However, these
summaries still contain concrete path constraints and concrete values, thereby
only solving the problem of redundant state exploration, but not of termination.
Other state merging techniques, also in the context concolic execution, have been
proposed [26] with the same termination problem.

Subsumption Checking. Anand et al. [1,2] propose symbolic execution with sub-
sumption checking. Their approach differs from our approach in two ways. First,
their approach targets static symbolic execution, while our approach targets a
variant of dynamic symbolic execution called concolic execution. Using dynamic
symbolic execution instead of static symbolic execution allows our approach to
replace symbolic values with a symbolic representation of the computed (ab-
stract) program value, instead of reasoning over program values in a purely
symbolic way. Therefore, our approach is more precise since it computes an ab-
stract model that contains concrete values (depending on the abstract domain
used) whenever possible. The second difference is that their analysis results in an
under-approximation of the program behaviour, while our analysis is designed to
return an over-approximation of the program behaviour at the cost of running
into false positives. However, their proposed shape abstractions could be used to
improve the abstract domain of symbolic expressions in our approach in order
to make them more precise.

Combining Symbolic Execution and Abstract Interpretation. The idea of com-
bining symbolic execution with abstract interpretation is not new. For instance,
Permenev et al. [19] propose combining static symbolic execution with predicate
abstractions [12] through delayed predicate abstractions. In their approach, static
symbolic execution is used to execute the majority of the program, but then
switches over to predicate abstractions to verify the property of interest. The
reasoning is that their properties of interest require deep exploration of the static
symbolic execution tree, and that using delayed predicate abstraction decreases
the required exploration to prove or disprove a property. We follow a similar
approach, but use an abstracted version of the state space right away. However,
depending on the configuration of the abstract machine, we could achieve similar
results. For instance, the machine could be configured to reason in a precise way
about the possible program states and up to point that the delayed predicate
abstraction should occur. To this end, the context component can be modified
to include precise calling contexts, and to remove those whenever delayed ab-
straction is needed.

Sound symbolic execution. Tiraboschi et al. [23] propose (relational) sound
symbolic execution. Their approach achieves termination by applying a form of
bounded symbolic execution after which the symbolic execution context is over-
approximated to also render the analysis sound. These bounds are implemented
through counters that are part of the symbolic execution state. Our approach in
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contrast depends on arbitrary contexts to differentiate different abstract concolic
states from each-other, which are only joined (i.e., over-approximated) when
they are no longer distinguishable. Moreover, our approach is derived from a
systematic abstraction of the CESKφ machine using the AAM methodology,
which opens it up to a myriad of common optimizations (cf. Section 6), and
precision-enhancing techniques (e.g., variants of context sensitivity).

Soft Contract Verification. Nguyen et al. [17] propose soft contract verifica-
tion which is a technique to static analyse software contracts in higher-order
programming languages. This work has since been extended to include stateful
programs [16], and has been rendered compositional [?]. Our work offers a more
generalized way of expressing this soft contract verification. Nguyen et al. pro-
pose a machine where the path constraint and symbolic store (i.e., a mapping
from addresses to concolic values) is always included in the program state (i.e.,
corresponding to our “local” configuration), and is never widened to a more ab-
stract value. Instead, their approach solves this problem in ad-hoc manner by
simply removing all symbolic expressions and path constraints whenever the pro-
gram execution reaches a loop. Our approach, in contrast, does not require this
loop detection and widens the affected machines components naturally. Finally,
the work by Nguyen et al. use a form of static symbolic execution, whereas we
use concolic execution. The main difference is that their work does not require
multiple concolic executions of the same machine, and does not require the com-
putation and therefore abstraction of a model. The lack of a model potentially
introduces more imprecision in the analysis results and leads to a higher number
of false positives.

Relational Analysis. In a relational analysis, program states are explored in a
path-sensitive manner by indexing the program state with predicates on a set
of program variables. To render the analysis finite, this set of program variables
needs to be finite, and so do their predicates. In traditional relational analyses
this set of variables is determined before running the analysis. Other techniques
have been proposed to iteratively refine [3] this set of variables until the desired
level of precision is reached, or until the precision no longer improves by adding
additional variables. Our approach instead derives symbolic variables from the
program location of input statements, and counts them to determine the number
of corresponding concrete symbolic variables.

9 Future Work

In this paper we presented the first systematic abstraction of concolic exection
for soft contract verification. In contrast to the state of the art, this systematic
abstraction results in a more configurable abstract machine, leading to multiple
avenues for future work. As demonstrated by the results, our approach is some-
what slower than the existing state-of-the-art approach for soft contract verifi-
cation, Therefore, a natural avenue for future work is to further apply several
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AAM optimizations [11,18] to render our analysis scalable to larger programs.
Finally, another avenue of future work is refining the abstract representation of
symbolic expressions. Our representation is currently limited to three levels, a
bottom value, a symbolic expression or a fresh value. Other representations could
be used to make the analysis more precise, such as those found in [1].

10 Conclusion

We have introduced abstract concolic execution as a systematically-derived static
analysis supporting soft contract verification. The static analysis is sound and is
guaranteed to terminate. The downside is that false positives may be returned,
so the analysis is incomplete. We demonstrated, however, that the benefits of
concolic execution are retained. For instance, our approach enables analysis de-
velopers to replace symbolic representations with abstract values whenever the
solver is not sufficiently powerful to solve some of the introduced constraints, or
whenever modelling certain programming language features (e.g., closures) be-
comes a burden on the performance of the solver. To render concolic execution
abstract, we introduced a novel extension to the CESK machine, CESKφ, which
models both the instrumented version of the program and the concolic itera-
tion loop itself. Inspired by the AAM recipe, we then abstracted this semantics
by abstracting the components of the machine, and its small-stepping relation.
We have shown that the resulting machine predicts all behaviour found by the
concrete machine (i.e., is sound), and that it terminates for any program in-
put. When applying abstract concolic execution to soft contract verification, we
found that it outperforms the state-of-the-art approaches in terms of precision
while being somewhat slower. We have also demonstrated that our approach is
more configurable than existing approaches by relying on real abstractions of
path constraints, symbolic expressions, and symbolic variables, elliminating the
need for a store caches and ad-hoc rules for updating them.
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