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Abstract

Detecting and debugging concurrency bugs is particularly hard. The complexity of con-
current programs is huge due to the exponential number of possible interleavings between
the multiple units of execution of those programs. Having help from the computer to
detect concurrency bugs — or prove their absence — can substantially reduce debugging
time.

In this dissertation, we investigate the use of abstract interpretation to detect race con-
ditions and deadlocks in concurrent programs. We use the PCESK machine, as described
by Might and Van Horn, to compute an over-approximation of the set of states reachable
by a concurrent program. We provide a number of benchmarks to analyze the influence
of garbage collection and state subsumption on the performance of this machine in terms
of state space size and analysis time.

We define several analyses that use the computed set of reachable states to deduce
relevant properties of a concurrent program. Race condition analysis and deadlock analysis
are the most notable analyses we develop. Although both these analyses are unsound and
thus might miss some defects, they exhibit high precision and recall, allowing them to
detect a good portion of bugs in relatively short programs.

This dissertation shows that it is possible to use the PCESK machine for building
useful analyses to detect race conditions and deadlocks. The main limitation of this ap-
proach is the size of the state spaces involved in the analyses. We therefore investigate
the PCESKL machine, a variant of the PCESK machine that uses first-class locks instead
of cas (compare-and-swap) as a synchronization primitive. We find that the PCESKL

machine leads to simplified analyses and reduced state space size, resulting in reduced
analysis time. This machine is therefore more suited for analyzing longer and more com-
plex programs.

Keywords: static analysis, concurrency, abstract interpretation, race conditions, dead-
locks.
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Il est particulièrement difficile de détecter ainsi que de corriger des erreurs liées à la
concurrence dans des programmes. À cause du nombre exponentiel de possibilités d’en-
trelacement entre plusieurs unités d’éxécution d’un programme concurrent, la complexité
de ces programmes est grande. Il est possible de considérablement réduire le temps de
débogage de ces programmes en utilisant des outils permettant de détecter automatique-
ment la présence de ces bogues — ou même de prouver leur absence.

Ce mémoire explore l’utilisation de l’interprétation abstraite dans le but de détecter
des conditions de courses et des interblocages dans des programmes concurrents. Cela est
fait en utilisant une machine de type PCESK, telle que décrite par Might et Van Horn,
qui permet de sur-approximer l’ensemble des états accessibles par un programme. Est
donné un ensemble de benchmarks qui analyse l’influence d’un ramasse-miettes (garbage
collector) et d’une méthode de subsomption d’état sur les performances de la machine en
terme de taille de l’ensemble d’états et du temps d’analyse.

Sont ensuite définies plusieurs analyses utilisant cet ensemble d’états dans le but
de déduire certaines propriétés des programmes analysés. Les analyses les plus utiles
développées dans ce mémoire sont une analyse des conditions de courses, ainsi qu’une
analyse des interblocages. Bien que ces analyses ne soient pas exhaustives (sound), et
risquent donc de ne pas détecter certains problèmes. leur valeurs de précision et de rappel
(recall) sont suffisament grandes que pour détecter une proportion importante de bogues
sur des programmes relativement courts.

Ce mémoire montre donc qu’il est possible d’utiliser une machine de type PCESK pour
produire des analyses utiles qui détectent des conditions de courses et des interblocages.
Cependant, la principale restriction de cette approche est la taille de l’ensemble d’états
utilisé par les analyses. Est alors introduite la machine de type PCESKL, une variante de la
machine de type PCESK qui utilise des verrous en tant qu’objet de première classe comme
primitive pour la synchronisation, plutôt que la primitive cas (compare-and-swap), utilisée
par la machine de type PCESK. Cette variante permet de simplifier la définition des ana-
lyses ainsi que de réduire la taille de l’ensemble d’états, et donc le temps d’analyse. Il est
donc aussi possible d’analyser des programmes plus longs et complexes avec cette variante.

Mots-clés : analyse statique, programmation concurrente, interprétation abstraite, condi-
tion de course, interblocage.
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Chapter 1

Introduction

This dissertation investigates the use of abstract interpretation to detect concurrency
issues in higher-order programs. Our thesis is that abstract interpretation can be used to
develop useful analyses in order to find defects in concurrent programs. Moreover, defining
the analyses with locks as a synchronization primitive instead of the traditional cas leads
to simpler and more efficient analyses for race conditions and deadlocks.

Detecting bugs such as race conditions and deadlocks is particularly hard, and they
tend to appear late in the development of programs. Being able to detect them automat-
ically using static analysis tools is therefore important. In this dissertation, we start from
Might and Van Horn’s PCESK machine, from which we can build a graph of states reach-
able by a higher-order program. We design analyses that use this graph to detect race
conditions and deadlocks. We then improve the PCESK machine to be able to analyze
larger programs based on locks. The race condition and deadlock analyses are simplified
by this improvement, and we are able to analyze more complex programs.

1.1 Background

At the time of writing, the improvement in processor frequency has now stalled for almost
ten years. However, the number of transistors per processor keeps increasing, following
Moore’s law. The processing power of computers also keeps increasing, but it is now
distributed over multiple cores. Indeed, multicore processors started to appear on personal
computers at around the same time as the frequency stopped increasing. Previously, to get
an increase in the speed of a program, one only had to wait the release of a new generation
of processors with higher frequency, it was a free lunch. The consequence of the stall in
processor frequency is that the free lunch has been over for almost a decade now [Sut05],
and programs have to take multicore processors into account in order to take advantage
of this gain in processing power.

Techniques that can take advantage of multicore processors have existed long before
multicore processors themselves appeared. These techniques date back to the origins of
modern operating systems, when time-sharing was invented to handle multiple processes
running concurrently on the same computer. Later developments introduced the notion
of threads, which were lighter than processes and made communicating between multiple
execution units easier. Threads are now supported by most of the programming languages
currently in use.

Programming a complex system that has multiple threads is far from easy. Two
executions of the same program with the same input data may lead to two different
interleavings of the program’s instructions. It is therefore not possible to conclude that
a program will always execute correctly with some input parameters by testing it on
some executions, as those executions might not run threads in an interleaving that will
exhibit a possible bug. Bugs due to concurrency in such programs tend to appear in some
executions and disappear in others, making debugging a hassle. Also, some bugs might
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only appear in very specific cases (e.g. a high load on the machine) and are not detected
until the program is deployed in production on multiple servers, when fixing the bug has
become much more costly. Because defects found late in the development are costly, and
concurrency bugs tend to appear late in the development, it is important to be able to
detect them as soon as possible.

Concurrency bugs can be divided into three classes: race conditions, deadlocks, and
livelocks.

1. A race condition happens when the outcome of a program (or the value of a variable)
depends on the order in which the threads are executed, that is, when there is a race
between multiple threads to read from or write to the same variable. Race conditions
may lead to incorrect values computed by a program. For example, if a banking
software has a race condition and a user performs two withdrawals concurrently on
the same bank account, the resulting amount of money in the bank account could
be the same as if he did only one withdrawal, while he got the money from both.

2. A deadlock happens when multiple threads block each other, for example when trying
to access the same resources in a different order. When a deadlock happens, parts
of the program get entirely blocked and the execution never terminates.

3. A livelock has the same result as a deadlock, but for a different reason. When a
livelock happens, the threads are not blocked, but will execute the same instructions
over and over again, each one for example acquiring a lock, trying to acquire another
lock, failing, releasing the first lock, and restarting. As Nick Falkner puts it1, “a
deadlock is a brick wall in the corridor, a livelock is the dance between you and a
coworker as you try to sidestep each other in the same corridor until you both die of
politeness.”

1.2 Objectives and Contributions

As concurrency bugs can be particularly hard to find, any assistance from the computer
to find them is welcome. Such help is provided by static or dynamic analysis tools. Our
objective is to use one of the most important static analysis techniques, namely abstract
interpretation, in order to find such defects. We base our work on the PCESK machine,
a formalism described by Might and Van Horn [MVH11]. Our contributions are the
following.

1. We provide a working implementation of the PCESK machine, along with results
from our benchmarks. Might and Van Horn describe the PCESK machine, but did
not provide an implementation. They identify the computational complexity of a
flow analysis, but no further indication about the practical performance (in term of
state space size and analysis time) is given. No information about the complexity
nor practical performance of their May-Happen-in-Parallel (MHP) analysis is given
either.

2. We present two improvements to the PCESK machine: abstract garbage collection,
and state subsumption. Abstract garbage collection was already formally described
for the CESK machine, but it requires modifications to be used in the setting of the
PCESK machine. State subsumption is also an existing technique, but again has
not been described in the context of the PCESK machine.

3. We adapt the MHP analysis of Might and Van Horn to avoid detection of some
specific false positives.

1http://nickfalkner.wordpress.com/2012/11/11/
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4. We define multiple new analyses based on the PCESK machine that are able to find
concurrency bugs: a race condition analysis and a deadlock analysis. We validate
those analyses on multiple examples.

5. We present the PCESKL machine, a variant of the PCESK machine that uses locks
as a synchronization primitive. We adapt the race condition analysis and define
a new deadlock analysis for the PCESKL machine. We validate those analyses on
multiple examples, and provide benchmarks demonstrating that this machine leads
to better performance than the original PCESK machine.

1.3 Overview of the Approach

This dissertation starts by describing the principles behind static analysis (Section 2.1),
and then describes abstract interpretation, an important static analysis technique used in
the approach of this dissertation (Section 2.2).

We also review existing static analysis tools that can analyze concurrency constructs
in programs (Section 2.3), and we look at other techniques not yet included into released
tools (Section 2.4).

Chapter 3 introduces material needed to describe the PCESK machine. In Section 3.1,
we formally describe the CESK machine and existing refinements that improve the anal-
yses, and demonstrate how to implement them. Section 3.2 describes Administrative
Normal Form, a way of writing programs that simplifies the semantics and that will be
useful when reasoning about concurrency in the PCESK machine.

The rest of the dissertation is devoted to describe our proposed solution to analyzing
concurrency constructs in higher-order programs. This solution is based on the PCESK
machine, a way of formalizing abstract semantics of concurrent, higher-order languages.
The language we use is CScheme (for Concurrent Scheme), a simplified version of Scheme,
with additional concurrency operators, and cas (compare-and-swap) as the only synchro-
nization primitive (Section 4.1). The semantics of this language are abstracted in order to
compute an over-approximation of the reachable states of any CScheme program in finite
time (Section 4.3). With this graph of reachable states, it is possible to build multiple
analyses that detect concurrency defects in CScheme programs. We develop a race con-
dition analysis (Section 5.4) and a deadlock analysis (Section 5.5). Both have limitations
and are unsound, but we demonstrate their usefulness on simple examples (Sections 6.4
and 6.5).

Chapter 7 delves into our implementation of the PCESK machine and its analyses,
and gives the results of our benchmarks on this implementation.

In Chapter 8, we overcome some of the limitations of our earlier analyses. We design
CSchemeL, a variant of CScheme, in which locks are used as concurrency primitives in-
stead of cas. We adapt the semantics of the PCESK machine, obtaining the PCESKL

machine. The use of locks simplifies the formalization of the race condition and deadlock
analyses, and solves some of their precision problems. Additionally, the PCESKL machine
performs better than the PCESK machine, which opens up the possibility of analyzing
larger programs.

1.4 Notation

We define here some notations used throughout this document.

• Domain and range: given a function f : X → Y (or a partial function f : X ⇀ Y ),
dom(f) denotes the set X and range(f) denotes the set Y .

• Free variables: given a language with a set of expression Exp, a set of variable
identifiers Var , fv : Exp → P(Var) computes the set of free variables appearing in
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an expression. A standard definition for such a function can be found for example
in [Tur08, pp. 247].

• Map: X ⇀ Y is a mapping from elements of set X to elements of set Y which is not
defined for every element of X (it is a partial mapping). This can be seen as a map
in traditional programming languages, where keys are elements of X and values are
elements of Y .

• Map restriction: with A = X ⇀ Y and B ⊂ X, A|B represents the map A restricted
to the keys that are contained in B.

• Powerset : given a set X, P(X) is the set of all subsets of X.

• Set difference: given A ⊂ X and B ⊂ X, A \B is the set containing all the elements
of A that are not in B.
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Chapter 2

State of the Art

This chapter describes the state of the art in static analysis of concurrent programs.
First, Section 2.1 describes more precisely what static analysis is, and why it is interesting
in our case. We then describe in more detail an important technique for performing
static analysis, namely abstract interpretation. This is the technique we use throughout
this dissertation, and we explain its mathematical foundations in Section 2.2. The main
commercial and open-source tools that perform static analysis of concurrent programs are
reviewed in Section 2.3, and other existing static analyses for detecting bugs in concurrent
programs, which are not included in one of the reviewed tools, are described in Section 2.4.

2.1 Static Analysis

Static analysis consists of analyzing computer programs without needing to execute them,
in order to find defects or to prove some properties about the program. Unfortunately,
Rice’s theorem [Ric53] tells us that designing a program that proves a non-trivial property
of any program is similar to solving the halting problem, which is undecidable.

To stay on the decidable side, static analysis techniques need to simplify the problem.
Instead of having an algorithm that can tell for any program whether it satisfies or not
a property (as in Figure 2.1) and being limited by Rice’s theorem (i.e. not being able to
decide any non-trivial properties about a program), we can restrict it to some instances of
this problem (answering yes or no), but let other instances unsolved (and answer maybe,
see Figure 2.2).

DeciderInput

Yes

No

Figure 2.1: Possible output of a decider.

Obviously, it is possible to always answer maybe, but that would not be very useful:
we would not have any precision. We want to solve a maximum number of instances, i.e.
have enough precision so that it suits the problem. Since static analysis is decidable, it
can be run in finite time at compilation time, and can provide strong guarantees about
the execution of the program.
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Static AnalyzerProgram Maybe

Yes

No

Figure 2.2: Possible output of a static analyzer.

For example, a programming language with a safe type system (a form of static analy-
sis) is guaranteed not to have any type errors at runtime. However, to achieve this, the type
checker has to reject some valid programs. For example, the program (let ((x (if #t

0 "foo"))) (+ x 1)) will be rejected by most statically typed programming languages
because both branches of the if do not have the same type (integer vs. string), even
though this program will correctly return 1 and never result in a runtime type error. The
set of rejected programs is an over-approximation of the set of invalid programs. Every
program that has a possible runtime type error is included in this set, but some perfectly
valid programs, without any runtime type error, are also included. This is the price of
decidability.

Many different techniques of static analysis exists. We will use abstract interpretation
because it mimics interpretation and thus allows to stay very close to the original language
semantics and avoids to force the user to modify his program in order to analyze it. It is also
more suited to analyze higher-order programs, that is, programs that use functions that can
take functions as arguments and return functions. Abstract interpretation also provides a
way to parameterize the precision, thus allowing to achieve the precision needed. Finally,
the base of analyzing concurrent programs with abstract interpretation have already been
formalized [MVH11], but no implementation seems to exist.

2.2 Abstract Interpretation

Abstract interpretation [CC77] is a technique used to reason about programs by inter-
preting an approximation of those programs through abstraction of the semantics. Using
abstract interpretation, it is possible to perform sound static analyses with a precision
that can be tuned to fit the needs. By various mechanisms, it is possible to increase the
precision at the cost of analysis time.

Abstract interpretation works in a similar way as conventional interpretation (which
we will call concrete interpretation). When using small-step semantics, concrete interpre-
tation can be described as follows [Mig10]: inject the program e to interpret into an initial
state s0, then step from this state to the next state using a transition function, until a
final state is reached. If no final state is reached, the execution will continue indefinitely.
As a result, we get a (possibly infinite) trace of the execution of the program (represented
in Figure 2.3 where the execution of the program goes through states s0, s1, . . . ), that
might depend on user input or other values that can change from one execution to the
other. Therefore, it is impossible to perform static analysis using this trace, and we need
to apply abstraction in order to compute something that is finite.

When doing abstract interpretation, the components of the state spaces that are infinite
(primitive values and addresses) are abstracted to be finite. This introduces a loss of
precision, but allows to have something computable in finite time. The program is also
injected, but into an initial abstract state ŝ0, and the steps are done using an abstract
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s0

e

s1 s2 s3 s4 . . .

inj

Figure 2.3: Concrete interpretation using small-step semantics.

transition function that can go from one state to multiple states because of this imprecision.
For example, to compute (if x 1 2), when x has been abstracted, the abstract transition
function may need to go to both branches. As a result, we get a finite state graph. Such a
state graph is represented in Figure 2.4, where we can see that the abstract state ŝ2 goes
to both abstract states ŝ3 and ŝ′3, and that the possibly infinite trace starting at ŝ4 is now
represented by a loop in the state graph. This state graph contains all the possible traces
of the execution of the program. Using this graph, we can prove properties that hold on
the analyzed program.

ŝ0

e

ŝ1 ŝ2 ŝ3

ŝ3′

ŝ4

înj

Figure 2.4: Abstract interpretation using small-step semantics.

2.2.1 Mathematical Foundations

This section introduces the mathematical concepts used in abstract interpretation. Those
concepts will be used to formally define an abstraction, but are not primordial to under-
stand the rest of this dissertation.

Definition 1. A relation v: S × S is a partial order if it is:

• reflexive: ∀x ∈ S : x v x,

• transitive: ∀x, y, z ∈ S : x v y ∧ y v z ⇒ x v z, and

• anti-symmetric: ∀x, y ∈ S : x v y ∧ y v x⇒ x = y.

Definition 2. A partially ordered set (S,v) is a set associated with a partial order on
that set.

A partially ordered set can be defined graphically using a Hasse diagram, in which a
vertex that connects two elements means that the element above the other is greater.

Example 1 (Hasse diagram). The partially ordered set (P({1, 2, 3}),⊆) is represented
in the Hasse diagram of Figure 2.5.

Definition 3. For a subset X ⊆ S, u ∈ S is an upper bound of X if ∀x ∈ X,x v u,
and u ∈ S is the least upper bound of X if, for every upper bound x of X, x v u. The
least upper bound of X will be denoted by

⊔
X, and xt y denotes

⊔
{x, y}. t is called the
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{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

{}

Figure 2.5: Hasse diagram of the partially ordered set (P({1, 2, 3}),⊆).

join operator. Similarly, l ∈ S is an lower bound of X if ∀x ∈ X, l v x, and l ∈ S is the
greatest lower bound of X if, for every lower bound x of X, l v u. The greatest lower
bound of X will be denoted by

d
X, and x u y denotes

d
{x, y} and is called the meet

operator.

Definition 4. A lattice (L,v) is a partially ordered set where every subset of L composed
of two elements has a least upper bound and a greatest lower bound.

Definition 5. A complete lattice (L,v) is a partially ordered set where every subset of
L has a least upper bound and a greatest lower bound. Also, a complete lattice comprises
two special elements: a bottom element ⊥ =

d
L and a top element > =

⊔
L.

Definition 6. A Galois connection between two partially ordered sets (A,vA) and
(B,vB) is a pair of functions (α : A → B, γ : B → A) such that ∀a ∈ A, b ∈ B,α(a) vB
b⇔ a vA γ(b).

2.2.2 Abstraction

In the case of abstract interpretation, an abstraction X̂ of a concrete set X consists of
a Galois connection between (P(X),⊆) and (X̂,v). Abstract values, sets and functions
will generally be denoted by the same name as their concrete counterpart, but with a hat.
In the context of abstract interpretation, the function α is called the abstraction function
and γ is called the concretization function. Because values are abstracted, operations on
values should also be abstracted.

>

+ 0 −

⊥

Figure 2.6: Partially ordered set of signs.
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Example 2 (Sign abstraction). A way to abstract the set of integers Z could be to map

it into the set of signs Ŝign = {+,−, 0̂,>,⊥} which forms a complete lattice with the v
ordering as shown in the Hasse diagram of Figure 2.6. The abstraction and concretization
functions are defined as follows:

α : P(Z)→ Ŝign

α(N) = ⊥ when N = ∅
= 0̂ when N = {0}
= + when ∀n ∈ N,n > 0

= − when ∀n ∈ N,n < 0

= > otherwise

γ : Ŝign → P(Z)

γ(P ) = ∅ when P = ⊥
= {0} when P = 0̂

= Z+ when P = +

= Z− when P = −
= Z otherwise

The negation operation f(N) = {−n | n ∈ N} can be abstracted as follows:

f̂(⊥) = ⊥
f̂(0) = 0

f̂(+) = −
f̂(−) = +

f̂(>) = >

Figure 2.7 represents the two sets P(Z) and Ŝign and graphically depicts the applica-
tion of the abstraction and concretization function, and highlights the difference between
applying f in the concrete state and applying f̂ in the abstract state space. When we
are in the abstract state space, we lose precision. If we apply the concretization function
after having applied the abstract operation, we can see that the result is less precise than
when we apply the concrete operation directly:

{1} = f({−1}) ⊆ (γ ◦ f̂ ◦ α)({−1}) = Z+

However, Z+ is an over-approximation of {1}, and properties that hold for Z+ will
also hold for {1}.

For performing abstract interpretation, all the infinite components of the concrete state
space have to be abstracted, as well as the operations on those components. Among those
components, the state component Σ represents the current state of the interpretation,
and the transition function (→) steps from one state to the next possible states. This
transition function also has to be abstracted.

Soundness An abstraction will be sound if it preserves the abstraction map [VHM10].
For a sound abstraction, if we have ς → ς ′, and α(ς) v ς̂, then ∃ς̂ ′ ∈ Σ̂ such that ς̂ →̂ ς̂ ′ and
α(ς ′) v ς̂ ′. Having soundness ensures that the states reachable by the concrete transition
function are also reachable by the abstract transition function, so that we can use only the
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. . .

Z+

{1}

{0}

{−1}

. . .

P(Z)

>

+

0

−

⊥

Ŝign

α

f̂

f

γ

Figure 2.7: Galois connection between integers and the sign abstraction.

abstract transition function to prove properties about the concrete transition function.
From an abstraction, we can build static analyses that inspect the produced state

graph to find certain properties about the program. A static analysis meant to find a
defect will be sound if it finds at least every defect in the program (and maybe has false
positives). To have a sound static analysis, it is necessary to use a sound abstraction, but
not sufficient, as the defects found will depend on how the static analysis is formalized.

Example 3 (Soundness of the sign abstraction). With the same sign abstraction as
the one used in Example 2, we can see in Figure 2.7 that, if we use f as the transition
function, ∀n̂ such that α({1}) v n̂ (i.e. n̂ ∈ {>,+}) we always have a n̂′ such that
f̂(n̂) = n̂′ and α({−1}) v n̂′. Indeed, if n̂ = >, n̂′ = f̂(n̂) = > and α({−1}) = − v >,
and if n̂ = +, n̂′ = f̂(n̂) = − and α({−1}) = − v −. We can further verify that this
property holds not only for {−1} but for any n ∈ P(Z), meaning that this abstraction
is sound.

Precision The closer an abstraction is to its concrete counterpart, the higher the preci-
sion. However, an abstraction with higher precision will lead to increased computing time.
The abstraction used has to make a trade-off between computation time and precision,
since we want a precision that is sufficient to analyze the properties we are interested in,
but we also want the analysis to terminate in a reasonable amount of time.

Example 4 (Precision of the sign abstraction). Suppose that we are interested to know
whether an integer will always be positive during the execution of a program. The
sign abstraction of Example 2 might be sufficient, depending on the operations that are
performed on the numbers. For example, if we analyze a program that has a counter
i that starts at 0 and that is continually increased by 1, this abstraction is sufficient
to know that i will always be positive (0 or a positive number increased by a positive
number is a positive number). However, if it is increased by 2 and then decreased by
1, the abstraction will not be precise enough to reason about the sign of i because it
will observe that i is increased by some positive number and then increased by some
negative number, without having any information about the value of those numbers, and
it will conclude that the abstract value of i is >, which contains non-positive numbers.
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2.3 Existing Analysis Tools

Many tools that can detect bugs in concurrent programs already exist. These tools can
either perform dynamic or static analysis. Dynamic analysis tools will only detect bugs
when they happen at runtime. Some dynamic analysis tools might for example tweak the
scheduling algorithm to expose more of those bugs, as IBM ConTest does [Ur08]. On the
other hand, static analysis tools are executed right before or after compilation and are
thus able to detect bugs without having to execute the program. This section will review
the most common static analysis tools among those that can verify concurrent programs,
and discuss some of their shortcomings.

Among static analysis tools there exists many model checkers that verify if a pro-
gram (described by its model) satisfies a set of properties (that is, the specification of
the program). Most of the model checkers that can verify concurrent programs (such
as SPIN [Hol04]) require the user to describe the system to verify in a specific language
(such as PROMELA, in the case of SPIN) and are thus not able to automatically ana-
lyze programs without requiring action of the user. Notable exceptions are Bandera, a
model checker for concurrent programs written in Java, and McErlang, a model checker
for Erlang. Those are described later in this section.

Other static analysis tools use various techniques. Tools such as FindBugs identify
bugs that follow some pre-encoded patterns, which makes the analysis unsound as it is
not possible to encode every pattern for a class of bug. CheckThread relies on annotations
given by the user, to identify calls to non-thread-safe functions from thread-safe ones.
Other tools such as CodeSonar and MayPar relies on symbolic execution. CodeSonar
supports common programming languages while MayPar only supports an uncommon
language. Finally, ThreadSafe is a commercial tool which can detect many concurrency
bugs but we found no description of the techniques it uses.

2.3.1 Bandera

Bandera [CDH+00] is a tool that eases the use of conventional model checking tools that
accept specific input languages (e.g. SPIN with PROMELA) to verify programs written
in Java. Typical model checking tools accept a language that describes the finite-state
transition system corresponding to the program. Bandera does the automatic translation
of a Java program to one of those languages, and has multiple translator to support
different model checking tools. It explicitly supports Java’s concurrency constructs [HD01]
and is thus adapted to analyze concurrent programs.

Bandera resolves the barrier of language difference for using model checking tools.
However, in order to verify a program with Bandera, the user still has to explicitly state
which properties are to be verified.

2.3.2 McErlang

McErlang [FS07] is a model checker that implements an Erlang virtual machine that will
explore multiple possible paths taken by a program in order to find states which results
in errors.

The user can also specify linear temporal logic (LTL) formulas to verify during the
execution of the program. Similarly to Bandera, this tool resolves the problem of the
input language, but the user still has to specify the properties the tool should verify (even
though in this case, fatal errors such as uncaught exceptions are found automatically).

2.3.3 FindBugs

FindBugs [HP04a] is a popular open-source static analysis tool that analyzes Java pro-
grams for bugs. It is able to detect many classes of bugs, including concurrency bugs [HP04b].
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However, the analysis is carried out by looking at common structural bug patterns (as op-
posed to behavioral bug patterns). For example, it is a common error to call the run()

method on a Java thread instead of the start() method. This will execute the code of
the thread on the current thread and will not create a new thread. Such patterns are
recognized by findbugs and reported to the user.

The analysis made by findbugs scales to production systems and is able to detect
many bugs on real codebases [APM+07]. However, since it is based on bug patterns it
is only able to detect the patterns that have been encoded and will likely miss existing
bugs on a given codebase. This implies that findbugs cannot be used to reason about
the absence of certain bug classes. Also, many of the bug patterns depend on features
of the Java language (e.g. calling run() instead of start()) and not on higher-level,
language-independent constructs.

2.3.4 CodeSonar

CodeSonar1 is a proprietary static analysis tool that can analyze C, C++ and Java pro-
grams to detect many different bugs. Because CodeSonar is based on symbolic execution,
Grammatech argues that CodeSonar is able to detect more bugs than traditional static
analysis tools that use bug patterns. One key feature of CodeSonar is that it puts great
emphasis on detecting concurrency errors.

Among other bugs, CodeSonar is able to detect data races, deadlocks and incorrect
uses of synchronization techniques. The analysis of those concurrency errors relies on the
fact that the programming model uses locks. No information could be found about how
CodeSonar scales with respect to the size of the codebase.

2.3.5 CheckThread

CheckThread2 is an open-source static analysis tool aimed at finding concurrency bugs
in Java bytecode. CheckThread requires to define a thread policy by adding Java an-
notations to chunks of code that are considered as thread-safe (@ThreadSafe) or not
(@NotThreadSafe), or as thread-confined (@ThreadConfined). When a non-thread-safe
method is called from a thread-safe part of the code, an error will be displayed by Check-
Thread at compile time. Also, inside a method declared as thread-safe CheckThread will
ensure that no shared data will be subject to reads and writes without synchronization.
A downside of this approach is that the user is required to annotate the entire program,
which can take a non-negligible amount of time. If done incorrectly, the analysis might
also fail to recognize some errors. This is for example the case if the user declares some
parts of the code as non thread-safe, while they should be thread safe for the correctness
of the application.

2.3.6 MayPar

MayPar [AFMG12] is a proprietary static analysis tool that targets a language based on
concurrent objects, where objects are the concurrency unit and asynchronous methods are
used for communication. It is able to find whether two expressions in a program written
in this language may happen in parallel or not. This form of analysis is called a may-
happen-in-parallel analysis (MHP analysis). However, it does not support bug detection.

2.3.7 ThreadSafe

ThreadSafe3 is a proprietary static analysis Eclipse plugin aimed at finding concurrency
bugs in Java programs. It can detect bugs such as race conditions, deadlocks, unpredictable

1http://www.grammatech.com/codesonar
2http://checkthread.org/
3http://www.contemplateltd.com/threadsafe
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result, and can also advise the user on how to improve some parts of its code (e.g. in the
presence of redundant synchronization). As it is a commercial product, no information
was found as to how ThreadSafe works.

2.4 Static Analysis of Concurrent Programs

This section reviews various academic work related to static analysis of concurrent pro-
grams, which has not been integrated into one of the existing tools described previously.

Older work such as Jagannathan et al.’s aims at optimizing programs instead of de-
tecting defects in them. Most of the recent work analyzes the use of locks to detect both
race conditions and deadlocks. A notable exception is the race detection technique of Naik
et al. which combines multiple passes of static analysis to detect the absence of such an
error. The works of Flanagan et al. and Boyapati et al. take a different approach as it
uses the type system to enforce the absence of concurrency bugs.

2.4.1 Jagannathan et al.

Jagannathan et al. [WJP94, JW94, Jag95] describe an abstract interpreter that is able to
compute both intra- and inter-thread control-flow and dataflow information of programs
written in a language inspired by Scheme and SML. This language supports dynamic pro-
cess creation with spawn and uses shared memory through shared locations, created and
manipulated with mk-loc, read and write. The read operation is a blocking read. It is
shown how to implement future and touch with those features, and an efficient imple-
mentation of such an interpreter is described. An analysis useful for doing optimizations
of concurrent programs is also described, but unlike other approaches presented here, no
work seems to have been done on finding defects in such programs.

In fact, their abstract interpreter does not seem adapted to find defects such as race
conditions. Their approach consists of assigning to each program location an abstract
environment and an abstract store, indicating the possible variable values at each program
location. However, to be able to find race conditions, one has to be able to reason about
which expressions can be evaluated in parallel, and the information computed by this
abstract interpreter does not allow such reasoning.

In this dissertation, we will build upon another abstract interpreter approach by Might
and Van Horn [MVH11], which can build a state graph of a concurrent program’s execu-
tion, thus allowing to reason about which expressions may be evaluated in parallel.

An interesting point however is the fact that the analysis is built for a language with
a few concurrency primitives, and still are able to analyze other concurrency constructs
such as futures.

2.4.2 RacerX

RacerX is a static analysis tool described in [EA03] but which does not seem to have been
released. It is able to analyze huge C codebases such as the Linux and the FreeBSD kernels
and to automatically detect both race conditions and deadlocks in those codebases. Both
the deadlock checking algorithm and the race detection algorithm use a lockset analysis,
and are thus dependent on the fact that the programs analyzed make heavy use of locks
(as it is the case with most analyses presented in this section). Many different techniques
that aim at minimizing the number of false positives or the analysis are described.

As a lockset analysis is highly dependent on the fact that the analyzed language uses
locks, we will not use this technique in this work, as we will first analyze a language
without locks, but with an atomic compare-and-swap.
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2.4.3 Naik et al.

Naik describes an algorithm for detecting race conditions in [NAW06] and an algorithm
to detect deadlocks in [NPSG09], both for Java programs. The two algorithms are similar
in the fact that they both perform multiple static analyses to try to refute a condition for
the absence of the defect. For the race detection algorithm, a pair of statement of a Java
program is free of any race condition if one of the four following conditions holds.

1. The pair of statements never access the same memory location. This is checked by
a may-alias analysis.

2. The memory location accessed by the statements is always thread-local. This is
checked by a thread-escape analysis.

3. The statements are ordered by the thread structure of the program. This is checked
by a may-happen-in-parallel analysis.

4. The statements are ordered by lock-based synchronization. This is checked by a
conditional-must-not-alias analysis [NA07].

For the deadlock detection algorithm, there are six necessary conditions for a deadlock
to happen between two threads that perform two locks operations (thread ta does its lock
operations at locations la1 and la2 , and similarly for thread tb) with a pair of locks. However,
nothing is said about deadlocks involving more than two locks.

1. Both threads should be able to reach li2 after having done the first lock operation at
li1, while still holding the lock (reachability). This is checked by a call-graph analysis.

2. The lock acquired at la1 can be the same as the lock acquired at lb2 and similarly for
lb1 and la2 (aliasing). This is checked by a may-alias analysis.

3. A lock acquired by a thread can be accessible from more than one thread (escaping).
This is checked by a thread escape analysis.

4. Both threads can reach la2 and lb2 simultaneously (parallel). This is checked by a
may-happen-in-parallel analysis.

5. Because locks are reentrant in Java, both threads should acquire different locks at
li1 and li2 (non-reentrent). This is checked by a may-alias analysis while it would
require a must-alias analysis to be sound (which is harder to check).

6. Both thread can respectively reach la1 and lb1 without holding a common lock (non-
guarded). This should also be checked by a must-alias analysis but is checked by a
may-alias analysis at the cost of soundness.

Those two analyses are both unsound but seem to be able to find many race conditions
and deadlocks. We will use the idea of combining multiple analyses to find race conditions
when we describe our race condition analysis.

2.4.4 Lock-Order Graphs

Multiple analyses [AB01, vP04, WTE05] detect deadlocks in Java programs and libraries
by building a lock-order graph that captures the locking information for the entire library.
This lock-order graph contains cycles when there is a possibility of deadlock.

[AB01] extend the support of concurrency in Jlint (a general-purpose static analyzer
for Java programs) in order to improve the detection of deadlocks. This approach is able
to analyze huge Java programs by keeping the analysis simple, but it only detect specific
cases of deadlocks (on 15 examples, only 6 are correctly analyzed).
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[vP04] describes a generic unsound analysis to detect deadlocks, which seem to have
very few false negatives.

[WTE05] aims at detecting deadlocks in Java libraries, and, similarly to RacerX, pro-
vides many approaches to reduce the number of false positives.

For the same reason that we will not use a lockset analysis inspired from RacerX, we
will not use the lock-order graphs approach as it is dependent on the fact that locks are
used as a synchronization primitive.

2.4.5 Flanagan et al.

A different approach to statically prevent race conditions and deadlocks is to use an ap-
propriate type system. Flanagan et al. managed to express an analysis as an extension
of Java’s type system. This analysis checks whether the appropriate locks are held when
shared fields are accessed [FA99, FF00], but it requires to annotate the Java code. How-
ever, a follow-up paper describes how to automatically infer those annotations [AFF06].
Flanagan and Qadeer also describe a type system that not only avoids deadlocks and
race conditions, but that checks the atomicity of Java methods annotated with an atomic

annotation [FQ03].

2.4.6 Boyapati et al.

Boyapati et al. [BR01] also describe a type system that ensures the absence of race
conditions in Java programs. Later, the type system was extended to also avoid dead-
locks [BLR02]. The type system is based on ownership types and unique pointers in order
to enforce object encapsulation without being too constrained. However, this system re-
quires the user to encode its locking strategy in the types of its program which can be
a big overhead for existing codebases. The resulting language is formalized in details as
SafeJava in [Boy04].

2.5 Conclusion

In this chapter we described the concepts behind static analysis, and looked in detail at
one of the many possible approaches to do static analysis, namely abstract interpretation.
We introduced the mathematical foundations of abstract interpretation, which comprises
lattices, Galois connections, and abstractions.

We looked at both existing static analysis tools that can analyze concurrent programs,
and existing academic work to analyze such programs. We have seen that many different
approaches can be used (model checking, bug patterns, lockset analysis, type systems, . . . ).

The ideal tool should have multiple properties. One important property is that the tool
should be able to analyze a program without requiring the user to translate it into another
language or adding annotations, as this might not be practicable for large programs.
Another important property is that the user should not have to tell the tool what to look
for — the tool should be able to detect defects in the program automatically. Indeed,
finding properties that should hold in a program is far from easy and requires a good
understanding of the program. Also, bugs tend to appear where they are not expected,
and having an automatic analysis prevents the user from only checking parts where bugs
are expected.

As having an analysis that is both sound (every bug of a certain kind is found, there
are no false negatives) and complete (every bug found is indeed a potential bug, there are
no false positives) is undecidable, we want an analysis that only has a “small” number
of false negatives and false positives. A sound analysis will be able to prove the absence
of certain classes of bugs in a program, while a complete analysis will just find some of
the bugs contained in that program. A trivial complete analysis is the one that does not
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detect any bug. It is thus important to have an analysis that can detect a “good” portion
of the defects it looks for, while only having a few false positives.

The related work described in this chapter tends to miss at least one of the desired
properties, and most of the existing analyses depend on the fact that locks are used as
a concurrency mechanism. Also, few of the existing concurrency analyses take higher-
order programs into account. To investigate how we could combine our desired properties
and have an analysis that is independent of locks, we will base our work on Might and
Van Horn’s PCESK machine [MVH11], which is based on abstract interpretation. To
describe this machine, we first need to introduce some concepts, which is done in the next
chapter.
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Chapter 3

Background Material

This chapter describes material that serves as the foundation for the rest of this disser-
tation. We start by introducing the CESK machine, a formalism used to describe an
interpreter in its concrete as well as its abstract version. This machine computes a set of
states that are reachable by the input program. Later, this will allow us to build static
analyses that verify properties by inspecting this set of reachable states.

In Section 3.2, we present a brief description of atomic expressions and Administrative
Normal Form (ANF). Distinguishing atomic expressions from non-atomic expressions is
important in the context of concurrent programming, and ANF enforces atomicity where
required.

3.1 The CESK Machine

In this Section we formalize the semantics of an untyped λ-calculus. We use a machine
that allows us to abstract the semantics while staying close to the concrete one. We
follow the approach of [VHM10] to build a sound abstract machine for a simple sequential
language. First, the language interpreted by this machine is described in Section 3.1.1.
Then, the concrete semantics are given in Section 3.1.2 in order to show how to interpret
this language. Those concrete semantics are then abstracted in Section 3.1.3 to have a finite
state space, thus allowing to have a decidable analysis. Finally, some existing refinements
that improve either the running time of the machine or its precision (or both) are discussed
in Section 3.1.4.

This machine will be then be used as a basis for the formalization of a parallel machine
in Chapter 4.

3.1.1 Language

We define the CESK machine for an untyped λ-calculus whose syntax is given in Figure 3.1
and only contains abstraction and application.

v ∈ Var a set of identifiers

e ∈ Exp ::= v | (e e) | (λv.e)

Figure 3.1: Syntax of an untyped λ-calculus.

3.1.2 Concrete Semantics

The semantics of a machine such as the CESK machine can be described in four constructs:

1. the state space defines the structure of the states of the machine,
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2. the transition function defines how to step from one machine state to the next,

3. the injection function defines how to inject the expression to evaluate into an initial
machine state, and

4. the evaluation function defines the set of machine states that are reachable given an
initial expression.

State Space The state space of this CESK machine is given in Figure 3.2. The states
(ΣCESK) are composed of five components:

1. the control component Control represented by the expression being currently evalu-
ated or the value resulting from an evaluation,

2. the environment component Env which binds variable names to addresses,

3. the store component Store which binds addresses to values,

4. the continuation component Addr which indicates the address of the current contin-
uation, and

5. the time component Time which will depend on the analysis one want to make.

The CESK machine initially takes its name from its components (Control, Environment,
Store, Kontinuation), but we use a variant that replace the current continuation of a state
by the address of this continuation, and that adds a timestamp to every state to simplify
the allocation of new addresses.

ςCESK ∈ ΣCESK = Control × Env × Store ×Addr × Time

Control = Exp + Val

ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ Val

val ∈ Val = Clo + Kont

κ ∈ Kont ::= halt | ar(e, ρ, a) | fn(clo, a)

clo ∈ Clo ::= (λv.e)× Env

a, b ∈ Addr an infinite set of addresses

t, u ∈ Time an infinite set of timestamps

Figure 3.2: State space of the CESK machine.

Transition Function The transition function for this CESK machine is parameterized
by two functions:

tick : ΣCESK → Time

alloc : ΣCESK → Addr

The definition of those functions depend on the analysis one wants to do. For the
concrete case, we have Time = Addr = Z, and define tick(〈 , , , , t〉) = t + 1 and
alloc(〈 , , , , t〉) = t.

The transition function is formalized by the relation (→) ⊂ ΣCESK × ΣCESK. We write
ςCESK → ς ′CESK to mean that (ςCESK, ς

′
CESK) ∈ (→). We also use the following: κ = σ(a),

b = alloc(ςCESK), u = tick(ςCESK). We can now give the three cases that compose the
transition function.
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1. To evaluate a variable v, look up in the store the value associated with the address
of this variable:

〈v, ρ, σ, a, t〉 → 〈σ(ρ(v)), ρ, σ, a, u〉.

2. To evaluate an abstraction, create a closure by coupling the abstraction with the
current environment:

〈(λv.e), ρ, σ, a, t〉 → 〈((λv.e), ρ), ρ, σ, a, u〉.

3. To evaluate an application (e0 e1), first evaluate the operator e0 and push a con-
tinuation to evaluate the argument e1 afterwards. To push a continuation, update
the store with the new continuation (which lives at b = alloc(ςCESK)) and update the
address component of the state to be b:

〈(e0 e1), ρ, σ, a, t〉 → 〈e0, ρ, σ[b 7→ ar(e1, ρ, a)], b, u〉.

4. When an expression has been reduced to a value, the current continuation (which is
κ = σ(a)) has to be applied:

• if it is an argument evaluation continuation (ar), evaluate the argument stored
inside this continuation and push a function application continuation:

〈clo, ρ, σ, a, t〉 → 〈e, ρ′, σ[b 7→ fn(clo, a′)], b, u〉 if κ = ar(e, ρ′, a′),

• if it is a function application (fn) continuation, bind the function’s argument
to the computed value, evaluate the function’s body and pop a continuation:

〈val, ρ, σ, a, t〉 → 〈e, ρ′[v 7→ b], σ[b 7→ val ], a′, u〉 if κ = fn(((λv.e), ρ′), a′).

To evaluate a program, the machine will continually apply one of these rule until the
current control component is a value and the current continuation is the halt continuation.

Injection Function To evaluate an expression, we first need to inject it into an initial
machine state. This is done using the injection function ICESK : Exp → ΣCESK, defined as:

ICESK(e) = 〈e,∅, [ahalt 7→ halt], ahalt, t0〉

where ahalt and t0 respectively corresponds to an initial address and an initial times-
tamp (e.g. ahalt = 0 and t0 = 0 if we have Time = Addr = Z). When the machine has a
value in its control component and has halt as its current continuation, the evaluation is
completed and the machine halts (no more transition rule can apply).

Evaluation Function We can now define the evaluation function eval : Exp → P(ΣCESK)
which computes the set of reachable states for an expression (and not only the final value,
which would not be useful to do static analysis):

eval(e) = {ςCESK | ICESK(e)→∗ ςCESK}.

Example 5 (Concrete CESK evaluation). We show how to use this concrete machine
to evaluate the set of states reachable by the folowing program:

((λx.x) (λy.(λz.y)))
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First, this program is injected into an initial state:

I(((λx.x) (λy.(λz.y)))) = 〈((λx.x) (λy.(λz.y))),∅, {ahalt 7→ halt}, ahalt, 0〉

The concrete transition function is then continually applied, leading to the following
states, where we avoid repeating store values that remain the same:

〈((λx.x) (λy.(λz.y))),∅, {ahalt 7→ halt}, ahalt, 0〉
→ 〈(λx.x),∅, {ahalt, a0 7→ ar((λy.(λz.y)),∅, ahalt)}, a0, 1〉
→ 〈((λx.x),∅),∅, {ahalt, a0}, a0, 2〉
→ 〈(λy.(λz.y)),∅, {ahalt, a0, a2 7→ fn(((λx.x),∅), ahalt)}, a2, 3〉
→ 〈((λy.(λz.y)),∅),∅, {ahalt, a0, a2}, a2, 4〉
→ 〈x, {x 7→ a4}, {ahalt, a0, a2, a4 7→ ((λy.(λz.y)),∅)}, ahalt, 5〉
→ 〈((λy.(λz.y)),∅), {x 7→ a4}, {ahalt, a0, a2, a4}, ahalt, 6〉

The result of eval(((λx.x) (λy.(λz.y)))) would thus be the set containing all those
states.

3.1.3 Abstract Semantics

Testing membership of a state inside the set eval(e) for a given expression is undecidable
because of the halting problem. To solve this, we need to abstract the machine in order to
compute a finite approximation of the set eval(e). To do so, we need to adapt the state
space so that it becomes finite, and to adapt the transition function to take this change
into account.

State Space In the state space defined in Figure 3.2, the only sources of infiniteness are
the addresses and the timestamps. By making them finite, the resulting state space also
becomes finite (Figure 3.3). Note that the store is now a mapping from addresses to sets
of values, meaning that multiple values can be stored at the same address.

ς̂CESK ∈ Σ̂CESK = Ĉontrol × Ênv × Ŝtore × Âddr × T̂ime

ĉ ∈ Ĉontrol = Exp + V̂al

ρ̂ ∈ Ênv = V ar ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂al)

v̂al ∈ V̂al = Ĉlo + K̂ont

κ̂ ∈ K̂ont ::= halt | ar(e, ρ̂, â) | fn(ĉlo, â)

v̂al ∈ V̂al ::= (λv.e)× Ênv

â, b̂ ∈ Âddr a finite set of addresses

t̂, û ∈ T̂ime a finite set of timestamps

Figure 3.3: State space of the abstract CESK machine.

Transition Function The transition function mainly stays the same, except that values
in the store now have to be joined instead of updated, in order to preserve soundness. The
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functions tick and alloc are also adapted:

t̂ick : Σ̂CESK → T̂ime

âlloc : Σ̂CESK → Âddr

A typical implementation for these functions consists of remembering the last k call-
sites, where k is called the polyvariance of the analysis. t̂ick will update this list of

call-sites, while âlloc will use it to generate a new address. This kind of analysis is called
k-CFA (k-Control-Flow-Analysis) [Shi91].

The abstract transition function (→̂) : Σ̂CESK × Σ̂CESK is defined as follows, with κ̂ ∈
σ̂(â), b̂ = âlloc(ς̂CESK), û = t̂ick(ς̂CESK).

1. Variable evaluation has to take into account the fact that multiple values may live
at the same address, and thus the transition function may leads to multiple states
(one for each value stored at the address of the variable).

〈v, ρ̂, σ̂, â, t̂〉 →̂ 〈ĉlo, ρ̂′, σ̂, â, û〉

where ĉlo ∈ σ̂(ρ̂(v)).

2. Application evaluation needs to perform a join on the store to push a new continu-
ation.

〈(e0 e1), ρ̂, σ̂, â, t̂〉 →̂ 〈e0, ρ̂, σ̂ t [b 7→ ar(e1, ρ̂, â)], b̂, û〉.

3. Abstraction evaluation stays the same and creates a closure by coupling the abstrac-
tion with the current environment.

〈(λv.e), ρ̂, σ̂, â, t̂〉 → 〈((λv.e), ρ̂), ρ̂, σ̂, â, û〉

4. Continuation evaluation also needs to perform a join on the store.

• For an argument continuation:

〈ĉlo, ρ̂, σ̂, â, t̂〉 →̂ 〈e, ρ̂′, σ̂ t [b 7→ fn(ĉlo, â′)], b̂, û〉 if κ̂ = ar(e, ρ̂′, â′),

• For a function application continuation:

〈val, ρ̂, σ̂, â, t̂〉 →̂ 〈e, ρ̂′[v 7→ b̂], σ̂ t [b̂ 7→ val], â′, û〉 if κ̂ = fn(((λv.e), ρ̂′), â′).

Example 6 (Abstract CESK evaluation). When we use the abstract interpreter, the
main difference with the concrete interpreter is that an address can be associated with
more than one value. Therefore, an application of the transition function may lead to
multiple reachable states. For example, the transition function leads to two different
states when applied to the following state, as two values are associated to the address
a2:

〈x, {x 7→ a2}, {a2 7→ {((λx.x)),∅), ((λy.(λz.y)),∅)}, . . .}, ahalt, t〉

The two resulting states are:

〈((λx.x)),∅), {x 7→ a2}, {a2 7→ {((λx.x)),∅), ((λy.(λz.y)),∅)}, . . .}, ahalt, u〉
〈((λy.(λz.y)),∅), {x 7→ a2}, {a2 7→ {((λx.x)),∅), ((λy.(λz.y)),∅)}, . . .}, ahalt, u〉

21



Injection Function The injection function is adapted to the abstract state space:

Î(e) = 〈e,∅, [âhalt 7→ halt], âhalt, t̂0〉

where âhalt and t̂0 are the abstract conterpart of ahalt and t0 of Section 3.1.2.

Evaluation Function We can finally define the abstract evaluation function êval(e) :
Exp → P(Σ̂CESK):

êval(e) = {ς̂CESK | Î(e) →̂∗ ς̂CESK}.

Using this function, it is possible to build a finite set approximating all the possible
states reachable during the execution of an expression, since this abstraction is sound
(Theorem 2 of [VHM10]). By examining the set of reachable states, it is thus possible to
prove certain properties about the program, such as the absence of certain classes of bugs.

In practice, it is sometimes more useful to reason about the graph of reachable states,
which over-approximate every possible path that the execution of a program can take. The
exploration of the state graph can be done by any graph exploration method. The initial
node is the injected expression, and the successors of a node are the result of applying the
transition function once to this node. We can thus build and explore the graph using a
conventional method such as a breadth-first search (BFS) or a depth-first search (DFS).

Example 7 (CESK-based analysis of the error expression). Suppose we add an error

expression to the language of Figure 3.1, that leads to a runtime error when evaluated.
Programs can contain references to this error expression without leading to errors, for
example:

(((λy.(λz.(y z))) (λx.x)) (λx.error))

This program reduces to the following expression, after two application of the tran-
sition function.

(λx.error)

This expression cannot be reduced anymore and the error expression has never been
evaluated. To check whether such a program is exempt of errors generated by the error

expression, we can build the set of reachable states using êval , and check that this set
does not contain any state with error as its control component:

NoError(e)⇔ @〈error, , , , 〉 ∈ êval(e)

If the abstraction is precise enough, this property should hold when we evaluate this
program with our abstract CESK machine. If this property holds and the abstraction is
sound, we know that the program will never result in such an error.

However, if for example the functions (λx.x) and (λx.error) were stored at the
same address in the store, one of the reachable state will have error as its control
component, while this program will never reach this state when evaluated with the
concrete interpreter. Such an abstraction would not allow us to detect that this program
is exempt of such errors, because it is not precise enough. Thus, if the property does
not hold, it does not mean that there will be such an error, just that this error may
happen. Programs that are exempt of this error but for which NoError does not hold
are called false positives. Since we want to perform a sound analysis, the approximation
is conservative and is thus subject to false positives.
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3.1.4 Existing Refinements

The set of reachable states computed by êval will generally contain many non-needed
states and thus slow down the analysis. Various techniques can be used to improve the
size of this set, without losing precision. We describe here three existing techniques that
either reduce the size of the reachable states set or even improve the precision of the
analysis: abstract counting, abstract garbage collection and state subsumption checking.

Abstract Counting The use of a join instead of an update in the store of the abstract
machine leads to a much bigger state space and a lot of unnecessary work. Abstract
counting [MS06] consists of replacing most of those joins by updates when possible. This
is done by counting the number of times an abstract address is allocated. When an address
is allocated only once, we can replace every join by an update without losing soundness.
When an address is allocated more than once, it means that this address corresponds to
multiple concrete variables and cannot be safely updated, and the join is needed.

Abstract Garbage Collection Since the continuations and variable bindings live in
the store and are never reclaimed, the store becomes filled with old continuations and other
non-reachable variables. New values might be assigned the same address as one of those
unused value, which will result in a loss of precision. Abstract garbage collection [MS06,
VHM10] is the abstract counterpart of concrete garbage collection, and allows to reclaim
those unused addresses, leading to an increase in both the precision and running time of
the analysis. The garbage collector uses the concept of live locations, i.e. locations that
are still accessible in the store and should not be reclaimed. Those live locations can be
computed for the concrete machine with LLσ and LLρ defined as:

LLσ(e) = ∅
LLσ(clo) = LLρ(e) where (e, ρ) = clo

LLσ(halt) = ∅
LLσ(fn(clo, a)) = {a} ∪ LLσ(clo) ∪ LLσ(σ(a))

LLσ(ar(e, ρ, a)) = {a} ∪ LLρ(e) ∪ LLσ(σ(a))

LLρ(e) = range(ρ)|fv(e)

The live locations can also be computed for the abstract machine by replacing each
occurrence of LLσ(σ(a)) by: ⋃

val∈σ(a)

LLσ(val)

With the ability to compute live locations, we can define a GC machine that computes
reachable addresses, whose state is composed of a grey set G (reachable addresses not yet
visited), a black set B (reachable addresses visited), and the store σ. This machine’s states
are thus in:

ΣGC = P(Addr)× P(Addr)× Store

The transition function (→GC ) : ΣGC ×ΣGC takes an address a from G, computes its
live locations, add them to G and add a to B:

〈G,B, σ〉 →GC 〈G′,B′, σ〉
where a ∈ G

B′ = B ∪ {a}
G′ = G ∪ LLσ(σ(a)) \ B′
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We also define a function R : ΣCESK → P(Addr) that computes the set of reachable
addresses for a machine state. This is not done in [VHM10], but it simplifes the adaptation
of this abstract garbage collector for the PCESK machine, in Section 4.4.4. This function
contains the main logic of the abstract garbage collection and is defined as:

R(〈e, ρ, σ, a, t〉) = L
where 〈LLρ(e) ∪ LLσ(σ(a)), {a}, σ〉 →∗GC 〈∅,L, σ〉

Finally, we can define a new transition function (→′) : ΣCESK × ΣCESK for the CESK
machine that will perform the garbage collection:

〈e, ρ, σ, a, t〉 →′ 〈e, ρ, σ|L, a, t〉
where L = R(〈e, ρ, σ, a, t〉)

Note that this transition is defined for the concrete CESK machine, but it is directly
applicable to the abstract machine by replacing the concrete elements by abstract ones.
When running the CESK machine, this new transition (→′) will be made after each CESK
transition (→). Doing it after and not before is important because it will have more impact
on reducing the size of the state space (the difference for the CESK machine is small, but
becomes much bigger for the PCESK machine).

State Subsumption When exploring the abstract state graph, it can happen that at
some point we visit an abstract state that is more specific than a previously visited state.
Such a state can be skipped because all its successors have already been reached by the
more general state. This technique is described for graph transition systems in [ZR12],
but can be adapted for abstract interpretation.

First, we need to define the partial orders on environments and stores as follows.

ρ̂1 v ρ̂2 ⇔ ∀v ∈ dom(ρ̂1), ρ̂1(v) = â⇒ ρ̂2(v) = â

σ̂1 v σ̂2 ⇔ ∀â ∈ dom(σ̂1), v̂al1 ∈ σ̂1(â)⇒ ∃v̂al2 ∈ σ̂2(â) ∧ v̂al1 v v̂al2

An abstract state ς̂CESK,1 is subsumed by another abstract state ς̂CESK,2, denoted by
ς̂CESK,1 v ς̂CESK,2 if the following conditions hold:

• their control component is equal,

• the environment component ρ̂1 of ς̂CESK,1 is subsumed by the environment component
ρ̂2 of ς̂CESK,2, i.e. ρ̂1 v ρ̂2,

• the store component σ̂1 of ς̂CESK,1 is subsumed by the store component σ̂2 of ς̂CESK,2,
i.e. σ̂1 v σ̂2,

• their continuation component is equal, and

• their timestamp component is equal.

When we reach an abstract state ς̂CESK,1 during the graph exploration, and we have
already visited a state ς̂CESK,2 such that ς̂CESK,1 v ς̂CESK,2, we can completely skip this state
because all its successors have already been reached and either have been visited or are
scheduled for being visited later.

Depending on the implementation of the state space exploration, we may first reach
larger states that will subsume other states during the rest of the exploration. If we reach
those larger states sooner, the resulting state space will be smaller because the exploration
of those larger states prunes off the exploration of any state encountered later that they
subsume. [ZR12] argues that a depth-first exploration tends to reach sooner larger states
as the abstract state tends to be more and more abstracted as the transition function is
applied to it. However, in our case it is the opposite, as we will show in the benchmarks
of Section 7.2.
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3.1.5 Implementation

We now describe how to implement a minimal CESK machine, without any refinements,
in OCaml.

Concrete CESK Machine Implementation First, we have to describe the state
space in terms of OCaml types, which requires to reorder the type definitions to only
refer to previously defined types. Note that the store and component environment are
implemented as parameterized maps1 (instead of OCaml’s default functorized maps) for
the sake of brevity.

1 type var = s t r i n g
2

3 type exp =
4 | Var of var
5 | App of exp ∗ exp
6 | Abs of var ∗ exp
7

8 type addr = in t
9

10 type time = in t
11

12 type env = ( var , addr ) BatMap . t
13

14 type c l o = var ∗ exp ∗ env
15

16 type kont =
17 | Halt
18 | Arg of exp ∗ env ∗ addr
19 | Fun of c l o ∗ addr

20

21 type value =
22 | Clo of c l o
23 | Kont of kont
24

25 type s t o r e = ( addr , value ) BatMap . t
26

27 type c on t r o l =
28 | Exp of exp
29 | Val of value
30

31 type s t a t e = {
32 c on t r o l : c on t r o l ;
33 env : env ;
34 s t o r e : s t o r e ;
35 addr : addr ;
36 time : time ;
37 }

The manipulation of the environment and the store is abstracted from their imple-
mentation using the following functions. Even though they have the same implementation
for the environments or for the store, we keep them with different names to ease further
changes to the store.

1 let env empty =
2 BatMap . empty
3

4 let env extend m k v =
5 BatMap . add k v m
6

7 let env lookup m k =
8 BatMap . f i nd k m
9

10 let store empty =
11 BatMap . empty
12

13 let s to r e s e t m k v =
14 BatMap . add k v m
15

16 let store lookup m k =
17 BatMap . f i nd k m

We will use the definition of tick and alloc given previously.

1 let t i c k s t a t e =
2 s t a t e . time + 1
3

4 let a l l o c s t a t e =
5 s t a t e . time

We can then implement the transition function as a step function, which pattern
matches the control component of the state to find which transition rule to use. When
reaching the final state, it returns the same state as it was given.

1All the OCaml modules starting with Bat are part of OCaml’s extended standard library, batter-
ies (http://batteries.forge.ocamlcore.org/), which is installable via OPAM (http://opam.ocamlpro.
com/).
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1 let s tep s =
2 match s . c on t r o l with
3 | Exp e −>
4 begin match e with
5 | Var v −>
6 { s with
7 c on t r o l = Val
8 ( store lookup s . s t o r e
9 ( env lookup s . env v ) ) ;

10 time = t i c k s }
11 | Abs (v , e ) −>
12 { s with
13 c on t r o l = Val ( Clo (v , e , s . env

) ) ;
14 time = t i c k s }
15 | App ( e0 , e1 ) −>
16 let b = a l l o c s in
17 { s with
18 c on t r o l = Exp e0 ;
19 s t o r e = s to r e s e t s . s t o r e b
20 (Kont
21 (Arg ( e1 , s . env , s . addr )

) ) ;
22 addr = b ;
23 time = t i c k s }
24 end
25 | Val value −>

26 let b = a l l o c s
27 and k = store lookup s . s t o r e s . addr

in
28 begin match k with
29 | Kont (Arg ( e , env ’ , a ’ ) ) −>
30 begin match value with
31 | Clo c l o −>
32 { c on t r o l = Exp e ;
33 env = env ’ ;
34 s t o r e = s to r e s e t s . s t o r e b
35 (Kont (Fun ( c lo , a ’ ) ) ) ;
36 addr = b ;
37 time = t i c k s }
38 | −> f a i l w i t h ” Inva l i d s t a t e ”
39 end
40 | Kont (Fun ( ( v , e , env ’ ) , a ’ ) ) −>
41 { c on t r o l = Exp e ;
42 env = env extend env ’ v b ;
43 s t o r e = s to r e s e t s . s t o r e b

value ;
44 addr = a ’ ;
45 time = t i c k s }
46 | Kont Halt −>
47 s
48 | −> f a i l w i t h ” Inva l i d s t a t e ”
49 end

The injection function builds the initial state, and uses a fixed address for the halt
continuation, set to −1 to ensure that it will not clash with other addresses (which are
positive integers).

1 let a halt = −1
2

3 let i n j e c t e =
4 { c on t r o l = Exp e ;
5 env = env empty ;

6 s t o r e = s to r e s e t store empty
7 a halt (Kont Halt ) ;
8 addr = a halt ;
9 time = 0 }

For this concrete interpreter, the evaluation function will not build the set of reachable
states but instead apply the transition function until it reaches a final state (i.e. a state
which has a value as its control component and whose continuation is halt). The function
extract will recognize this final state and extract its return value.

1 let eva l e =
2 let rec eval aux s =
3 match ex t r a c t s with
4 | Some v −> v

5 | None −> eval aux ( s tep s )
6 in
7 eval aux ( i n j e c t e )

We can for example use this eval function to evaluate the program given in example 5,
which gives the expected result.

1 # eva l (App (Abs ( ”x” , Var ”x” ) , Abs ( ”y” , Abs ( ”z” , Var ”y” ) ) ) ) ; ;
2 − : value = Clo ( ”y” , Abs ( ”z” , Var ”y” ) , <abstr>)

Abstract CESK Machine Implementation The implementation of the abstract
CESK machine is similar to the concrete one described previously. The main difference is
that the set of addresses is finite, which implies that store can now have multiple values
stored at the same address. We reflect this in the code by changing the domain of the
store to a list of values.

1 type s t o r e = ( addr , value l i s t ) BatMap . t
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While the implementation of the environments stays the same, the store now use joins
instead of updates, so store set becomes store join.

1 let s t o r e j o i n m k v =
2 i f BatMap .mem k m then
3 BatMap . modify k ( fun v ’ −> v : : v ’ ) m
4 else
5 BatMap . add k [ v ] m

To demonstrate the effects of the loss of precision due to the finiteness of the abstract
state space, we restrict the timestamps to integers between 0 and 3, which will have as
a result to also restrict the addresses to integers in this range (and −1, for the halt
continuation).

1 let t i c k s t a t e =
2 ( s t a t e . time + 1) mod 4

The change of structure of the store requires us to change the transition function,
as it was described previously. Since the abstract transition function →̂ is now non-
deterministic, the step function does not return a single state anymore, but a list of
states. Invalid states are now ignored because they might arise due to a loss of precision.

1 let s tep s =
2 match s . c on t r o l with
3 | Exp e −>
4 begin match e with
5 | Var v −>
6 L i s t .map
7 ( fun value −>
8 { s with
9 c on t r o l = Val value ;

10 time = t i c k s })
11 ( store lookup s . s t o r e
12 ( env lookup s . env v ) )
13 | Abs (v , e ) −>
14 [{ s with
15 c on t r o l = Val ( Clo (v , e , s .

env ) ) ;
16 time = t i c k s } ]
17 | App ( e0 , e1 ) −>
18 let b = a l l o c s in
19 [{ s with
20 c on t r o l = Exp e0 ;
21 s t o r e = s to r e j o i n s . s t o r e b
22 (Kont (Arg ( e1 , s . env , s .

addr ) ) ) ;
23 addr = b ;
24 time = t i c k s } ]
25 end
26 | Val value −>
27 let b = a l l o c s

28 and ks = store lookup s . s t o r e s .
addr in

29 L i s t . concat @@
30 L i s t .map ( function
31 | Kont (Arg ( e , env ’ , a ’ ) ) −>
32 begin match value with
33 | Clo c l o −>
34 [{ c on t r o l = Exp e ;
35 env = env ’ ;
36 s t o r e = s to r e j o i n s .

s t o r e b
37 (Kont (Fun ( c lo , a ’ )

) ) ;
38 addr = b ;
39 time = t i c k s } ]
40 | −> [ ]
41 end
42 | Kont (Fun ( ( v , e , env ’ ) , a ’ ) )

−>
43 [{ c on t r o l = Exp e ;
44 env = env extend env ’ v b ;
45 s t o r e = s to r e j o i n s . s t o r e

b value ;
46 addr = a ’ ;
47 time = t i c k s } ]
48 | Kont Halt −>
49 [ s ]
50 | −> [ ] )
51 ks

The injection function has to use store join instead of the old store set.

1 let i n j e c t e =
2 { c on t r o l = Exp e ;
3 env = env empty ;
4 s t o r e = s to r e j o i n store empty

5 a halt (Kont Halt ) ;
6 addr = a halt ;
7 time = 0 }

Because the step function leads to multiple state, the state space is not a trace anymore
as it was in the concrete case, but a graph (each state can lead to more than one state).
We thus have to explore this entire graph to find the final states for the eval function.
This is done using a breadth-first search using a queue2.

2In fact, we use a Deque in which we only push one one side and pop from the other side, because
OCaml does not have a functional queue implementation but batteries’ BatDeque is functional.
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1 let eva l e =
2 let rec eval aux q r f =
3 match BatDeque . f r on t q with
4 | Some ( s , q ’ ) −>
5 begin match ex t r a c t s with
6 | Some v −>
7 eval aux
8 q ’
9 r

10 ( BatSet . add v f )
11 | None −>
12 let s ’ = step s in
13 eval aux
14 (BatDeque . append l i s t q ’ s

’ )

15 ( BatSet . union
16 ( BatSet . o f l i s t s ’ )
17 r )
18 f
19 end
20 | None −> f
21 in
22 BatSet . e lements
23 ( eval aux
24 (BatDeque . cons ( i n j e c t e )

BatDeque . empty )
25 BatSet . empty
26 BatSet . empty )

We can finally test this implementation on the program of Example 5, and see that
indeed because of the small number of possible addresses, we lost precision, as we now
have two possible results for this example.

1 # eva l (App (Abs ( ”x” , Var ”x” ) , Abs ( ”y” , Abs ( ”z” , Var ”y” ) ) ) ) ; ;
2 − : value l i s t = [ Clo ( ”y” , Abs ( ”z” , Var ”y” ) , <abstr>) ;
3 Kont (Arg (Abs ( ”y” , Abs ( ”z” , Var ”y” ) ) , <abstr >, −1) ) ]

We can also tune the eval function to produce a state graph instead of just the
final states. This is what is done our implementation of the CESK machine. Figure 3.4
represents such a graph for the following program (assuming we add support for letrec,
numbers and strings to the CESK machine).

(letrec ((count (lambda (n) (if (= n 0) "done" (count (- n 1))))))

(count 200))

Every state is represented by its control component (but contains all the components
of a CESK state), and edges between the states are labeled with the identifier of the
continuation that is pushed or popped (+ means pushed, - means popped, e means that
the continuation did not change). Green nodes are states whose control component is a
value, while red nodes are states whose control component is an expression to evaluate.
Note that the 200 iterations are abstracted into a cycle from which there is an exit path,
but we cannot conclude from this graph how many iterations will be performed.

3.2 Administrative Normal Form

In the language defined in Figure 3.1, the evaluation of an application might require
multiple steps in order to evaluate the argument. Consider for example the program
((λx.x) ((λy.y) (λz.z))) which requires first to evaluate the inner application ((λy.y) (λz.z))
before evaluating the outer application.

On the other hand, some other constructs such as an abstraction (λx.e) can be evalu-
ated atomically, without needing to remember which part of an expression we are currently
evaluating. In the case of the CESK machine, an expression is atomic if it can be evaluated
without needing to create a new continuation. It is then possible to define an atomic eval-
uation function that will evaluate such expressions without needing the transition function
of the machine.

It is also possible to transform a program such as ((λx.x) ((λy.y) (λz.z))) into a pro-
gram that requires its argument to be evaluated atomically, by introducing let statements.
In this case, the previous program could be rewritten as (let ((a ((λy.y) (λz.z)))) ((λx.x) a))
This is known as Administrative Normal Form (ANF) [FSDF93] and it is an intermediate
representation of programs used as an alternative to Continuation Passing Style (CPS).
Any program can be expressed in ANF without losing expressiveness.
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Figure 3.4: State graph of a program that contains a loop that terminates.

In the setting of concurrent programming, having a way to identify atomic expressions
allows us to give guarantees about the atomicity of other expressions, as we will see in
Chapter 4. If a special form requires all its arguments to be atomic, the evaluation of
the special form itself might be done in only one step of the transition function, without
creating new continuations for the evaluation of its arguments. It is thus possible to be
sure that the evaluation of such a special form will not be dependent on the possible
different interleavings between multiple threads. This will be useful when defining the
semantics of join and cas in Section 4.2.
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3.3 Conclusion

This chapter introduced material needed in the rest of this dissertation. The CESK
machine allows us to statically build a graph of states reachable by a program. This state
graph can be explored to perform static analysis. The PCESK machine introduced in
the next chapter is based on this CESK machine. The PCESK machine adds support
for multiple execution threads by capturing multiple CESK machines without their store
component in a single state, together with one shared store per state.

We also described Administrative Normal Form, which will become useful when rea-
soning about the semantics of parallel operations in the PCESK machine. Requiring that
the argument of a special form is atomic allows us to guarantee that this special form
itself is atomic. Atomicity will be useful for cas (compare-and-swap), which is inherently
atomic, but also to avoid coupling between the CESK and PCESK machines for other
parallel special forms (specifically join).
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Chapter 4

A Concurrent Scheme and its
PCESK-based Semantics

This chapter starts by introducing the CScheme language (Section 4.1) we will be using
in the rest of this work. Inspired by Might and Van Horn’s work [Mig11, MVH11], we
take a simplified version of Scheme on top of which we add three special forms to support
concurrency through shared memory: spawn, join, and cas. The concrete semantics of
this language are given in Section 4.2, and heavily rely on an underlying CESK machine
that handles all the sequential constructs of CScheme. This sequential CESK machine is
similar to the CESK machine defined in Section 3.1 but adds more constructs (letrec,
begin, if, set!, multiple-arguments functions, and more data types). (The sequential
CESK machine will not be described in detail here, as it is not the focus of this work.) We
then abstract the PCESK machine in Section 4.3, and Section 4.4 presents refinements to
improve analysis time and precision. Finally, Section 4.5 gives a brief summary of how
the PCESK machine can be used to perform static analysis.

4.1 The Language: CScheme

Before defining the analyses, we first need a language that supports concurrency. We will
use a simplified version of Scheme with special forms to handle concurrency through shared
memory, which we call the CScheme language (for Concurrent Scheme). The language
grammar is given in Figure 4.1.

This language supports four primitive values: numbers, booleans, functions, and thread
identifiers. Functions are created using the lambda special form and can have multiple
arguments (while it is not necessary, it simplifies the writing of programs). CScheme has
two kinds of expressions: atomic expressions (AExp), and compound expressions (CExp).

Atomic expressions consist of the primitive values that can directly be constructed in
the language, and of variable identifiers, which require a value lookup to evaluate.

Compound expressions contain multiple argument function calls, Scheme’s classical
begin, letrec, if, and set! special forms, and introduce three new special forms:

• (spawn e) creates a new thread to evaluate the expression e and immediately returns
the corresponding thread id,

• (join æ) expects æ to evaluate to a thread identifier t1, blocks the execution of
the current thread until t1 finishes its execution, and returns the value of the last
expression evaluated in t1,

• (cas v æold ænew) compares the values of v and æold and:

– if they are equal, updates the value of v to ænew, and returns #t,

– else, returns #f.

31



v ∈ Var a set of identifiers

n ∈ N a set of number literals

b ∈ B ::= #t | #f
e ∈ Exp ::= æ | cexp

f,æ ∈ AExp ::= lam | v | n | b
lam ∈ Lam ::= (lambda (v1 . . . vn) e1 . . . en)

cexp ∈ CExp ::= (f e1 . . . en)

| (begin e1 . . . en)

| (letrec ((v1 e1) . . . ) ebody1 . . . ebodyn)

| (if econd econs ealt)

| (set! v e)

| (spawn e)

| (join æ)

| (cas v æold ænew)

Figure 4.1: Grammar of CScheme.

When more than one thread is running, the context switches between threads happen
nondeterministically. With those three special forms, we are able to implement multi-
threaded programs that are safe, such as in Example 8. This program always increases
the counter two times and returns 2, no matter the order nor the frequency of context
switches.

Example 8 (Parallel counter implemented with cas). The following program creates a
shared counter that gets incremented in two threads:

(letrec ((counter 0)

(inc (lambda ()

(letrec ((old counter)

(new (+ old 1)))

(if (cas counter old new)

#t

(inc)))))

(t1 (spawn (inc)))

(t2 (spawn (inc))))

(join t1)

(join t2)

counter)

This program can be written differently, using a lock. A lock is an object that can
either be locked or not. Two operations can be done on a lock: it can be acquired by
a thread, and it can be released by a thread that previously acquired it. When a lock
is acquired by a thread, it becomes locked and cannot be acquired until it is released.
Example 9 implements the simplest form of locks (a boolean variable that can be set to
true or false, indicating whether the lock is locked or not) using cas as a building block.
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Example 9 (Parallel counter implemented with locks). The following program is a
typical implementation of a shared counter using locks:

(letrec ((lock #f)

(acquire (lambda ()

(if (cas lock #f #t)

nil

(acquire))))

(release (lambda ()

(set! lock #f)))

(counter 0)

(inc (lambda ()

(acquire)

(set! counter (+ counter 1))

(release)))

(t1 (spawn (inc)))

(t2 (spawn (inc))))

(join t1)

(join t2)

counter)

The style of programming concurrent programs with cas without using locks such as in
Example 8 is known as lock-free programming, because one thread can never block another.
If traditional locks were (incorrectly) used or simulated using cas it could however be the
case.

However, many programs use locks, and it is thus necessary to be able to analyze
programs that use locks. Fortunately, cas allows us to simulate locks as Example 9
showed.

The choice of cas as a synchronization primitive is thus justified by the fact that it
is possible to implement many other popular synchronization primitives: locks as shown
here, semaphores and condition variables [Bir04], as well as software transactional mem-
ory [Fra04].

4.2 Concrete Semantics: The PCESK Machine

We define the semantics of CScheme using a parallel CESK machine, PCESK, while staying
consistent with the CESK machine previously defined. This PCESK machine relies heavily
on the underlying sequential CESK machine. The only transition rules that have to be
added are the ones related to the concurrency constructs.

4.2.1 Concrete State Space

The concrete state space of the PCESK machine is given in Figure 4.2.
This machine follows the shared memory model by having multiple threads and only

one store. Each thread is identified by a thread identifier and is represented by a context,
which is similar to a CESK machine without the store component. Note that thread iden-
tifiers are first-class values because they are returned by spawn and manipulated by join.
Thread identifiers are also considered as addresses, as it will be explained in Section 4.2.4.

4.2.2 Atomic Evaluation Function

The concrete state space contains two kinds of expressions:

1. atomic expressions (AExp) are expressions that can be evaluated in finite time with-
out using the stack, and
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ς ∈ Σ = Threads × Store

T ∈ Threads = TID ⇀ Context

c ∈ Context = Control × Env ×Addr × Time

Control = Exp + Val

ρ ∈ Env = Var ⇀ Addr

κ ∈ Kont :: = rator((e0, . . . , en), ρ, a)

| rand(val , (e0, . . . , en), (val0, . . . , valn), ρ, a)

| begin((e0, . . . , en), ρ, a)

| letrec(abinding, ((v0, e0), . . . , (vn, en)),

(ebody,0, . . . , ebody,n), ρ, a)

| if(econd, econs, ealt, ρ, a)

| set!(v, ρ, a)

| halt

σ ∈ Store = Addr ⇀ Val

val ∈ Val = Clo + Bool + Num + Kont + TID

clo ∈ Clo = Lam × Env

t ∈ Time an infinite set of timestamps

a ∈ Addr an infinite set of addresses, includes TID

tid ∈ TID an infinite set of thread identifiers

Figure 4.2: Concrete state space of the PCESK machine.

2. compound expressions (CExp) are expressions that might require multiple steps to
evaluate (e.g. a function call requires to evaluate the operator and all the operands
before actually applying the function call).

We will need a function E : AExp × Env × Store → Val that can evaluate atomic
expressions in one step:

E(n, ρ, σ) = n

E(b, ρ, σ) = b

E(v, ρ, σ) = σ(ρ(v))

E(lam, ρ, σ) = (lam, ρ)

4.2.3 Conversion Functions

Due to the close relation between the PCESK’s Context and CESK’s ΣCESK, we will define
conversion functions between them. We also suppose to have a CESK machine which
supports the whole set of values and continuations of Figure 4.2.

The two conversion functions are S : Context × Store → ΣCESK which converts a
parallel context and a store into a sequential state, and C : ΣCESK → Context × Store
which converts a sequential state into a parallel context and a store. They are defined as
follows.

S(〈e, ρ, a, t〉, σ) = 〈e, ρ, σ, a, t〉
C(〈e, ρ, σ, a, t〉) = (〈e, ρ, a, t〉, σ)

34



4.2.4 Transition Function

Since we have a CESK machine that handles all the sequential transition through its
transition function (→) ⊂ ΣCESK × ΣCESK, the PCESK transition function (⇒) ⊂ Σ × Σ
needs to define how to use (→) for the sequential cases, and how to evaluate spawn and
join. The cas operation is sequential and can be supported by (→) directly, by adding
the following rule:

ς︷ ︸︸ ︷
〈(cas v æold ænew), ρ, σ, a, t〉 → 〈#t, ρ, σ[ρ(v) 7→ E(ænew, ρ, σ)], a, u〉 if σ(ρ(v)) = E(æold, ρ, σ)

→ 〈#f, ρ, σ, a, u〉 else

where u = tick(ς). Note that we ensure the atomicity of cas because its arguments
should be atomic expressions. No new continuation will have to be created to evaluate
those arguments, and cas can thus be evaluated in only one step and stay independent of
the threads interleaving order.

We also need a function newtid : Context ×Threads → TID that allocates new thread
identifiers, which is similar to the alloc function used in the CESK machine. For the
concrete case, with TID = Z, an adequate definition would be, for example:

newtid(c, T ) = |dom(T )|+ 1

We can then define the parallel transition function (⇒).

• If one of the threads can do a sequential step, the PCESK machine can do a step.

〈T [tid 7→ c], σ〉 ⇒ 〈T [tid 7→ c′], σ′〉
if S(c, σ)→ ςCESK and 〈c′, σ′〉 = C(ςCESK)

• To evaluate spawn, create a new thread to execute the given expression in the same
environment.

〈T [tid1 7→
c︷ ︸︸ ︷

〈(spawn e), ρ, a, t〉], σ〉 ⇒ 〈T [tid1 7→ c1, tid2 7→ c2], σ〉
where tid2 = newtid(c, T [tid1 7→ c])

c1 = 〈tid2, ρ, a, u〉
c2 = 〈e, ρ, ahalt, t0〉
u = tick(S(c, σ))

• When a thread has finished its execution, its final value is written in the store at
the address corresponding to its thread identifier (this is the reason why thread
identifiers should also be considered as addresses).

〈T [tid 7→ 〈val , ρ, ahalt, t〉], σ〉 ⇒ 〈T, σ[tid 7→ val ]〉

• A join can only be evaluated when the thread we join on has finished (i.e. a value is
stored at the address corresponding to its thread identifier). When this is the case,
this value is returned.

〈T [tid 7→ 〈(join æ), ρ, a, t〉], σ〉 ⇒ 〈T [tid 7→ 〈val , ρ, a, u〉], σ〉
if σ(E(æ, ρ, σ)) = val

where u = tick(S(c, σ))

When this rule cannot be applied (that is, the thread we join on is still running),
the context that does the join will block until this rule can be applied.
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Note that join expects its argument to be atomic. If it was not the case, a
continuation should be added to the CESK machine in order to apply the join

after having evaluated its argument. It is possible to do this, but it would in-
crease the coupling between the underlying CESK machine and the PCESK ma-
chine without adding any expressivity, as we can always replace (join (spawn e))
by (let ((t (spawn e))) (join t)).

4.2.5 Injection Function

The injection function I : Exp → Σ creates the initial machine state, containing only one
thread that will evaluate the given expression. It uses the injection function of the CESK
machine, ICESK : Exp → ΣCESK:

I(e) = 〈[tid0 7→ c], σ〉
where 〈c, σ〉 = C(ICESK(e))

4.2.6 Evaluation Function

The evaluation function eval : Exp → P(Σ) computes the set of reachable states and can
be defined similarly as it was done for the CESK machine:

eval(e) = {ς | I(e)⇒∗ ς}

Example 10 (Concrete PCESK Evaluation). We show how the concrete interpreter
will evaluate the following program:

(letrec ((t (spawn (+ 1 2))))

(join t))

First, the program (that we denote by e) is injected into an initial state:

I(e) = 〈[tid0 7→ 〈e,∅, ahalt, 00〉],
{ahalt 7→ halt}〉

Note that timestamps are subscripted with a number that identifies them to their
corresponding thread. This is important to avoid conflicts between addresses if two
different threads with the same timestamp need to store a value in the store. The first
transition rule then applies (do a parallel step from a sequential one, i.e. evaluate the
letrec with the underlying CESK machine), leading to the state:

〈[tid0 7→ 〈(spawn (+ 1 2)),∅, a0, 10〉],
{ahalt, a00 7→ letrec(. . . )}〉

Then, the spawn rule is applied. A new thread is created and its thread identifier is
returned to the initial thread:

〈[tid0 7→ 〈tid1,∅, a0, 20〉,
tid1 7→ 〈(+ 1 2),∅, ahalt, 01〉],
{ahalt, a00}〉

Then, either one of the threads can do a step. Suppose the first thread steps first:

〈[tid0 7→ 〈(join t), {t 7→ tid1}, ahalt, 30〉,
tid1 7→ 〈(+ 1 2),∅, ahalt, 01〉],
{ahalt, a00}〉
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At this point, the first thread is blocked because it joins on the second thread which
is still executing. The only thread that can step is thus the second one. We will not go
over the details of the evaluation of (+ 1 2). Just before the second thread finishes its
execution, the state is:

〈[tid0 7→ 〈(join t), {t 7→ tid1}, ahalt, 30〉,
tid1 7→ 〈3,∅, ahalt, 51〉],
{ahalt, a00 , . . .}〉

We can now apply the transition rule that will store the result of this thread into the
store.

〈[tid0 7→ 〈(join t), {t 7→ tid1}, ahalt, 30〉,
tid1 7→ 〈3,∅, ahalt, 51〉],
{ahalt, a00 , tid1 7→ 3, . . .}〉

Finally, the first thread can step by applying the transition rule for join.

〈[tid0 7→ 〈3, {t 7→ tid1}, ahalt, 30〉,
tid1 7→ 〈3,∅, ahalt, 51〉],
{ahalt, a00 , tid1 7→ 3, . . .}〉

All those states will be contained in eval(e), but there will also be other states. When
the second thread was created, instead of stepping the first one we could have stepped
the second one, leading to different states.

4.3 Abstract Semantics: The Abstract PCESK Machine

As we want to have a finite state space in order to be able to compute the set of reachable
states in finite time, we need to abstract the concrete PCESK machine defined in the
previous section. Three components lead to an infinite state space: the infinite sets of
addresses, timestamps and thread identifiers. We require that those three sets are finite.
This change is reflected into other components of the PCESK machine. In this section,
we adapt the state space to become finite, and then adapt the definition of the different
functions used: the atomic evaluation function, the conversion functions, the transition
function, the injection function and finally the evaluation function.

4.3.1 Abstract State Space

The concrete state space can be abstracted by replacing every component that is infinite
by a finite approximation. For this machine, not only addresses and timestamps have to
be abstracted, but also thread identifiers and primitive values. The resulting abstracted
state space is given in Figure 4.3.

As for the CESK machine of Section 3.1, since there are now only a finite number
of abstract addresses, the store becomes a mapping from abstract addresses to sets of
abstract values. The same property applies to the thread map (Threads). Since there
are only a finite number of abstract thread identifier, the thread map is now a mapping
from abstract thread identifiers to a sets of abstract contexts. This will be a source of
imprecision that will require a mechanism similar to abstract counting to solve the problem
(see Section 4.4).

The lattice used for the abstraction N̂um depends on the application. We can for
example use N̂um = Z + {>,⊥} where, as soon as two different elements of Z are joined
together, the result is >.
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ς̂ ∈ Σ̂ = T̂hreads × Ŝtore

T̂ ∈ T̂hreads = T̂ID ⇀ P(Ĉontext)

ĉ ∈ Ĉontext = Ĉontrol × Ênv × Âddr × T̂ime

Ĉontrol = Exp + V̂al

ρ̂ ∈ Ênv = V̂ar ⇀ Âddr

κ̂ ∈ K̂ont :: = rator([e], ρ̂, â)

| rand(v̂al , (e0, . . . , en), (v̂al0, . . . v̂aln), ρ̂, â)

| begin((e0, . . . , en), ρ̂, â)

| letrec(âbinding, ((v0, e0), . . . , (vn, en)),

(ebody,0, . . . , ebody,n), ρ̂, â)

| if(econd, econs, ealt, ρ̂, â)

| set!(v, ρ̂, â)

| halt

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂al)

v̂al ∈ V̂al = Ĉlo + Bool + N̂um + K̂ont + T̂ID + Âddr

ĉlo ∈ Ĉlo = Lam × Ênv

t̂ ∈ T̂ime a finite set of timestamps

â ∈ Âddr a finite set of addresses, includes T̂ID

t̂id ∈ T̂ID a finite set of thread identifiers

Figure 4.3: Abstract state space of the PCESK machine.

4.3.2 Atomic Evaluation Function

The abstract atomic evaluation function has to be adapted. It can now produce a set of
values instead of a single value: Ê : AExp × Ênv × Ŝtore→ P(V̂al). Its definition is:

Ê(n, ρ̂, σ̂) = {n}

Ê(b, ρ̂, σ̂) = {b}

Ê(v, ρ̂, σ̂) = σ(ρ(v))

Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)}

4.3.3 Conversion Functions

The two conversion functions Ŝ : Ĉontext × Ŝtore → Σ̂CESK and Ĉ : Σ̂CESK → Ĉontext ×
Ŝtore are trivially adapted for the abstract state space:

Ŝ(〈e, ρ̂, â, t̂〉, σ̂) = 〈e, ρ̂, σ̂, â, t̂〉

Ĉ(〈e, ρ̂, σ̂, â, t̂〉) = 〈〈e, ρ̂, â, t̂〉, σ̂〉

4.3.4 Transition Function

The abstract transition function (⇒̂) ⊂ Σ̂ × Σ̂ will also be defined using the sequential
transition function (→̂) ⊂ Σ̂CESK × Σ̂CESK.

The abstract sequential transition for cas is now non-deterministic, since we cannot
always determine whether a variable is equal to a value or not. We can however know that
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a variable is not equal to a value if the meet between this variable’s value and the value
is the bottom element of our lattice. For example, with the lattice N̂um = Z + {>,⊥},
we have 3 u 5 = ⊥, so we know that 3 is never equal to 5. In the PCESK case, a lattice
element is a set of value. Also, if the variable has only one possible concrete value which
is equal to the only possible concrete value of æold, we know that they are equal.

ς̂︷ ︸︸ ︷
〈(cas v æold ænew), ρ̂, σ̂, â, t̂〉 →̂ 〈#̂t, ρ̂, σ̂ ∪ [ρ̂(v) 7→ Ê(ænew, ρ̂, σ̂)], â, û〉

unless σ̂(ρ̂(v)) u Ê(æold, ρ̂, σ̂) = ⊥
→̂ 〈#̂f, ρ̂, σ̂, â, û〉

unless σ̂(ρ̂(v)) = Ê(æold, ρ̂, σ̂) = {v̂al} and γ(v̂al) = {val}

where û = t̂ick(ς̂).

The function n̂ewtid : Ĉontext×T̂hreads →̂ T̂ID has to be adapted to generate a finite
number of thread identifiers.

The choice of the abstraction for n̂ewtid will influence the precision of the analysis. One
possible choice is to use the calling context as explained CESK’s alloc in Section 3.1.3.
However, as [MVH11] points out, this is not adapted to programs that create multiple
threads from the same expressions (i.e. programs that uses a thread-pool pattern). When
a bound on the number of threads created by the program is known, we can use an
increasing bounded integer as thread identifier.

The abstract parallel transition function (⇒̂) can then be adapted to follow the changes
made in the state space.

• When one abstract thread can do a sequential step, the PCESK machine also can.
Note that the old context is kept in the thread map (and joined with the new one).

〈T̂ [t̂id 7→ {ĉ} ∪ Ĉ], σ̂〉 ⇒̂ 〈T̂ t [t̂id 7→ {ĉ′}], σ′〉

if Ŝ(ĉ, σ̂) →̂ ς̂CESK and 〈ĉ′, σ̂′〉 = Ĉ(ς̂CESK)

• For spawn, we also need to use a join instead of an update.

〈T̂ [t̂id1 7→ {

ĉ︷ ︸︸ ︷
〈(spawn e), ρ̂, â, t̂〉} ∪ Ĉ], σ̂〉 ⇒̂ 〈T̂ t [t̂id1 7→ {ĉ1}, t̂id2 7→ {ĉ2}], σ̂〉

where t̂id2 = n̂ewtid(ĉ, T [t̂id1 7→ {ĉ} ∪ Ĉ])

ĉ1 = 〈t̂id2, ρ̂, â, û〉
ĉ2 = 〈e, ρ̂, âhalt, t̂0〉

û = t̂ick(Ŝ(ĉ, σ̂))

• When an abstract thread halts, its final value is saved in the store. Note that the
old context remains in the thread map.

〈T̂ ′, σ̂〉 ⇒̂ 〈T̂ ′, σ̂ t [t̂id 7→ {v̂al}]〉

where T̂ ′ = T̂ t [t̂id 7→ {〈v̂al , ρ̂, âhalt, σ̂〉}]

• For join, the old context is also kept in the thread map.

〈T̂ t [t̂id 7→ {

ĉ︷ ︸︸ ︷
〈(join æ), ρ̂, â, t̂〉}], σ̂〉 ⇒̂ 〈T̂ t [t̂id 7→ {〈v̂al , ρ̂, â, û〉, ĉ}], σ̂〉

if σ̂(âv) = v̂al

where âv ∈ Ê(æ, ρ̂, σ̂)

û = t̂ick(Ŝ(ĉ, σ̂))
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4.3.5 Injection Function

The abstract injection function for the PCESK machine, Î : Exp → Σ̂, makes use of the
abstract injection function for the CESK machine, ÎCESK : Exp → Σ̂CESK:

Î(e) = 〈[t̂id0 7→ {ĉ}], σ̂〉

where 〈ĉ, σ̂〉 = Ĉ(ÎCESK(e))

4.3.6 Evaluation Function

Finally, the abstract evaluation function êval : Exp → P(Σ̂) can be defined:

êval(e) = {ς̂ | Î(e) ⇒̂∗ ς̂}

Example 11 (Loss of precision due to the finiteness of TID). Suppose we use the
abstract interpreter to evaluate the following program:

(letrec ((t1 (spawn 1))

(t2 (spawn 2)))

(join t1))

If the two new threads are given the same thread identifier, there will be a loss of
precision. The variables t1 and t2 will point to the same thread identifier and it would
be infeasible to distinguish the two threads. The join on t1 will produce two possible
results: 1 (as expected), and 2. êval(e) will contain states that are unreachable by the
concrete interpreter.

4.4 Refinements of the PCESK Machine

The PCESK machine described until here contains everything to perform an analysis,
but due to the many sources of nondeterminism, especially the exponential number of
possible thread interleavings, doing such an analysis is impractical on other than very
small programs. This section presents multiple techniques we use to either decrease the
complexity of the analysis or improve its precision.

4.4.1 Abstract Counting

Abstract counting has already been described for the CESK machine. There is nothing
special to change to use this technique on the PCESK machine, since it only concerns the
way the store does the joins and does not depend on other components of the machine.

4.4.2 Abstract Thread Counting

A major source of imprecision for an analysis in the abstract machine is the fact that the
transition function has to join the new context with the old one when sequentially stepping
a context, instead of replacing it. This results in having two different contexts with the
same thread identifier. This is because a thread identifier might be associated with multiple
threads, so a join is needed to avoid discarding possible interleavings. However, during the
execution of the abstract machine, many joins could be replaced by updates, since it will
generally be the case that only one thread is associated with a thread identifier (especially
for programs with a bounded number of threads). This can be seen as an adaptation of
abstract counting for the thread map instead of the store.

Those updates can be performed only when it is the case that only one thread is
associated with the identifier being updated, so we need to keep track of the number of
contexts associated with each thread identifier. This is done by introducing a component
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that counts the number of contexts per thread identifier, T̂Count . Note that we are only
interested to know if there is no context (0), one context (1), or more than one context
(∞) associated with a thread identifier.

ς̂ ∈ Σ̂ = T̂hreads × Ŝtore × T̂Count

µ̂ ∈ T̂Count = T̂ID → {0, 1,∞}

The transition rules have to be adapted to exploit this information: when joining on a
thread identifier t̂id , if µ̂(t̂id) = 1, we can do an update instead of a join. The transition
rules become:

• in the first rule, replace T̂ t [t̂id 7→ {ĉ′}] by T̂ [t̂id 7→ {ĉ}∪ Ĉ] if µ̂(t̂id) = 1 (else, keep
the old rule),

• for spawn, we can do a strong update on t̂id1 (if µ̂(t̂id) = 1), but not on t̂id2, because

we are creating a new context (thus, if a thread already exists with t̂id2 as identifier,
we must do a join),

• when an abstract thread halts, there is no joins so the rule does not change,

• for join, we can discard ĉ in T̂ t [t̂id 7→ {〈v̂al , ρ̂, â, û〉, ĉ}] which gives T̂ t [t̂id 7→
{〈v̂al , ρ̂, â, û〉}].

From now on, (⇒̂) will refer to this updated transition function.

4.4.3 Removing Threads

The transition rule to handle a thread that halts keeps the thread in the thread map. If
we are able to remove it, this will allows to free a thread identifier (if this is the only
thread associated with this identifier), thus possibly improving precision if another thread
is associated with this thread identifier later in the computation. This behavior requires
a simple change in the transition rule. The new thread map becomes T̂ instead of T̂ ′:

〈T̂ ′, σ̂〉 ⇒̂ 〈T̂ , σ̂ t [t̂id 7→ {v̂al}]〉

where T̂ ′ = T̂ t [t̂id 7→ {〈v̂al , ρ̂, âhalt, σ̂〉}]

According to [MVH11], doing this change can be done safely while preserving sound-
ness.

4.4.4 Abstract Garbage Collection

Abstract garbage collection has also already been described, but it cannot be used as-is
with the PCESK machine. Abstract garbage collection starts collecting live location at
the current expression of the CESK machine (the control component). In the PCESK
machine however, there is not one current expression, but one per context. Abstract
garbage collection has to be adapted to deal with those multiple expressions. The garbage
collection reclaims addresses that are reachable by none of the PCESK contexts by joining
the set of reachable addresses of each context and doing the store restriction on this set.
The definitions of LLσ, (→)GC and R given in Section 3.1.4 can stay the same, but the
transition (→′) becomes the parallel transition (⇒′) : Σ× Σ and is defined as:

〈T, σ〉 ⇒′ 〈T, σ|L〉

where L =
⋃

c∈range(T )

R(S(c, σ))
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4.4.5 State Subsumption

To adapt the state subsumption mechanism to the PCESK machine, we have to define
when an abstract PCESK state subsumes another. An abstract state ς̂1 (with store com-
ponent σ̂1) is subsumed by ς̂2 (with store component σ̂2) if:

• every context in the thread map T̂1 of ς̂1 is subsumed by a context with the same
thread identifier in the thread map T̂2 of ς̂2, that is, ∀t̂id ∈ dom(T̂1),∀ĉ1 ∈ T̂1(t̂id), ∃ĉ2 ∈
T̂2(t̂id) s.t. S(ĉ1, σ̂1) v S(ĉ2, σ̂2),

• σ̂1 is subsumed by σ̂2, i.e. σ̂1 v σ̂2.

4.5 Output of the PCESK Machine

In this section we will summarize what the PCESK machine computes (the how has been
described in details in the previous sections) as it will become useful in Chapter 5. If
we want to analyze programs using the PCESK machine, it is not necessary to know the
internals of this machine but rather what is its output.

To use the PCESK machine for analyzing a program, we first need to compute the
set of reachable states of this program using the abstract evaluation function êval , which
gives us a finite set of PCESK states (Σ) in output. As a reminder, each of those states
contains a map of contexts associated with a thread identifier (each context has a control
component, an environment, a continuation address and a timestamp), and a shared store.
As explained before, this set of states is an over-approximation of all the states that are
reachable by the program.

As described in Section 3.1.5, it is possible to adapt the evaluation function to compute
a state graph instead of a state set. The initial state Î(e) is the entry point of this graph
and the successors of a state are found by applying one step of the transition function.
The set of reachable states of the program is then equal to the set of vertices of this graph.
The main difference with the graph produced by the CESK machine is that, in the case
of the PCESK machine, each transition is labeled with the thread it operated on.

An example of such a state graph is given in Figure 4.4 and corresponds to the program
below. We can see that as soon as a thread is spawned, there is more than one possible
transition, and all the possible interleavings are taken into accounts. Once the thread t

finished its execution, it is removed, and the transition of the join of the main thread can
be performed.

(letrec ((t (spawn (+ 1 2))))

(+ (join t) 3))

To analyze a program, one will generally compute this state graph (though the set
of reachable states is sufficient to perform some analyses). With this state graph, it is
possible to deduce properties of the program by analyzing components of some or every
state of the graph. For example, we can see if an expression ever gets evaluated by looking
if there exists a control component of a state that is equal to this expression. This is
exactly what is done in Example 7 to find whether the expression error is evaluated in a
program or not.

4.6 Conclusion

In this chapter, we described the language for which our analyses will be defined, and we
have given its semantics based on a PCESK machine. The semantics have been abstracted
to be able to compute the set of reachable states of a program in finite time. This will
allow us to define decidable analyses in the next chapter.
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Figure 4.4: State graph of a CScheme program.
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Due to the potentially large size of this set of reachable states, multiple refinements are
needed to obtain a set that is practically computable. We described many refinements that
influence the size of the state space. Abstract counting can be taken as-is from the CESK
machine, and can also be used on the thread map resulting in abstract thread counting.
These refinements are existing refinements described by Might and Van Horn [MVH11].
We also introduced two new refinements to the PCESK machine: abstract garbage col-
lection and state subsumption. Abstract garbage collection has already proven useful for
the CESK machine, but required adaptation to be used in the PCESK machine. Indeed,
the PCESK machine has multiple control components, and we have to be careful not to
reclaim addresses that are not reachable in one thread but are still reachable in another.
State subsumption is another new refinement that consists of avoiding exploration of parts
of the state graph for which an over-approximation has already been explored.

Finally, this chapter summarized how the PCESK machine can be used to perform
static analyses. The next chapter will use this reasoning to build multiple useful analyses.
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Chapter 5

Applications of the PCESK
Machine

In this chapter, we use the PCESK machine from the previous chapter to build analy-
ses that can detect non-trivial concurrency issues. We start from Might and Van Horn’s
may-happen-in-parallel analysis [MVH11] and extend it into a conflict analysis. The may-
happen-in-parallel analysis and the conflict analysis only look at individual states in the
state graph built by the PCESK machine. We also describe an analysis that looks into
portions of the state graph to detect uses of cas where a failed cas is not retried. We
combine this analysis with the conflict analysis to get a more general race condition anal-
ysis. Finally, we present a deadlock analysis to detect deadlocks in programs using locks
implemented with cas. The analyses built in this chapter will be tested and validated in
the next chapter by applying them to various example programs.

5.1 May-Happen-in-Parallel Analysis

With the abstract PCESK machine, it is possible to deduce whether two expressions may
or will not happen in parallel with what is called a may-happen-in-parallel (MHP) anal-
ysis [MVH11]. Since every state of the state graph computed by the abstract interpreter
contains information about which expression each thread is currently evaluating, it is suf-
ficient to look for an element of the state space that contains the two expressions as the
context of two different threads.

We can define this as a relation MHP ⊂ Exp × Exp. In the program e, the two
expressions e1 and e2 may happen in parallel if MHP(e1, e2). Might and Van Horn define
this MHP relation as:

MHP(e1, e2)⇔

∃〈T̂ , σ̂〉 ∈ êval(e) ∃t̂id1, t̂id2 ∈ dom(T̂ ), 〈e1, , , 〉 ∈ T̂ (t̂id1) ∧ 〈e2, , , 〉 ∈ T̂ (t̂id2).

However, this definition has a problem when e1 = e2. If the expression e is evaluated
at some point by any thread in the program, MHP(e, e) will be true, even if the program

only contains one thread. Indeed, any context ĉ evaluating e will satisfy ∃t̂id1, t̂id2 ∈
dom(T̂ ), ĉ ∈ T (t̂id1) ∧ ĉ ∈ T (t̂id2). Requiring that t̂id1 6= t̂id2 is too restrictive, since
we may have two different contexts that are associated with the same abstract thread
identifier where both threads evaluate e.

We adapt this definition to ensure that if the two expressions are evaluated in the same
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thread, they are in distinct contexts. The definition now becomes:

MHP(e1, e2)⇔

∃〈T̂ , σ̂〉 ∈ êval(e) ∃t̂id1, t̂id2 ∈ dom(T̂ ),

ĉ1︷ ︸︸ ︷
〈e1, , , 〉 ∈ T̂ (t̂id1) ∧

ĉ2︷ ︸︸ ︷
〈e2, , , 〉 ∈ T̂ (t̂id2)

∧ ĉ1 6= ĉ2

It is important to remember that if this relation holds for two expressions, it does not
necessarily mean that they will be evaluated in parallel. This will depend on the actual
path taken during the execution of the program. Also, some states in the state graph might
not be reachable as this state graph is an over-approximation of the program execution.
However, when this relation does not hold for two expressions, those two expressions will
not be evaluated in parallel (if the abstraction is sound). Indeed, if MHP(e1, e2) does
not hold, there is no state where e1 and e2 are evaluated in parallel, and thus there is no
possible execution of the program leading to such a state.

This analysis alone does not allow us to automatically detect concurrency bugs in a
program, as it only provides information about expressions whose evaluation may happen
in parallel. By taking into account the way the store is used, we can extend it to obtain
a more meaningful analysis, which is the subject of the next section.

5.2 Read/Write and Write/Write Conflicts Detection

By using the MHP analysis, we can detect conflicts between accesses to the store. A read
is made on the store when a variable is evaluated, and a write is done by using either
set! or cas. A program contains a read/write conflict if a read operation may happen in
parallel with a write operation on the same store address. Similarly, a program contains
write/write conflict if two write operations on the same address may happen in parallel.

Note that CScheme does not allow pointer aliasing (having more than one way to access
a store location), although this is generally possible in other languages. For example,
pointer aliasing is possible with pointers in C, with references in C++, by default with
object arguments in Java, or in Scheme by using cons-cells and set-car! or set-cdr!.

In CScheme however, it is not possible to have more than one variable that points to
the same address in the concrete state space. We could take advantage of this property to
detect conflicts by checking whether two accesses (read/write or write/write) to the same
variable may happen in parallel. Since no pointer aliasing is possible, such an analysis
would be sound.

However, if we later want to extend CScheme to allow some form of pointer aliasing (e.g.
by supporting mutable cons-cells), the analysis will become unsound and its usefulness will
decrease.

We choose another solution to deal with aliasing while keeping soundness. Conflicts
can be detected by checking whether two accesses to the same address may happen in
parallel. This might result in a loss of precision since in the abstract state space, multiple
variables may point to the same address because of the finiteness of the store. In such
cases, a detected conflict that in reality will never happen is called a false positive.

Example 12 (Parallel counter with a set! conflict). The following program implements
a parallel counter similar to Example 8. However, instead of using the atomic operation
cas, it directly uses a set!, introducing a race condition.
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(letrec ((counter 0)

(inc (lambda ()

(set! counter (+ counter 1))))

(t1 (spawn (inc)))

(t2 (spawn (inc))))

(join t1)

(join t2)

counter)

Suppose thread t1 first evaluate (+ counter 1), which gives 1, then thread t2

evaluates the whole (set! counter (+ counter 1)), storing 1 in counter. Thread
t1 will then do the set!, storing 1 in counter. The final value of counter will thus
be 1, even though inc has been called twice. If those operations are ordered differently,
counter might take the correct value of 2.

We want to be able to detect that there are two conflicts in this example: a read/write
conflict between counter in (+ counter 1) and the set!, and a write/write conflict
between the set! and itself, since it can be evaluated in two different threads at the
same time.

Looking for concurrent read and writes successfully detects potentially harmful con-
flicts, but it will also detect some harmless conflicts that result from the use of cas. The
general pattern that arise when we use cas to update some variable x is the following:

(letrec ((update-x (lambda ()

;; Instead of (set! x (f x))

(let ((old x)

(new (f old)))

(if (cas x old new)

#t

(update-x))))))

...)

When update-x is called in more than one thread, it is possible that the cas is eval-
uated in parallel with either itself, or with the read on the variable x. While it is indeed
a conflict, it is not a harmful one. In fact, cas can be seen as an atomic set! that
does not perform the write operation when there is a conflict and notifies the programmer
about this. It is then the programmer’s responsibility to correctly handle this conflict by
trying to update the variable later. As most correct uses of cas will lead to such harmless
conflicts, it is useful to have an analysis that filters out this kind of conflict. As long as
they are correctly handled by retrying the cas later in the execution in case of failure (we
will see how to check if this is the case in Section 5.3), those conflicts are indeed harmless.

However, we have to be careful when filtering out conflicts involving only cas as a
write operation, as shown in Example 13.

Example 13 (Parallel counter with a cas conflict). Consider the following program,
which is Example 8, extended with support for a decrease operation, but it contains a
race condition due to an incorrect implementation of the function dec.
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(letrec ((counter 0)

(inc (lambda ()

(letrec ((old counter)

(new (+ old 1)))

(if (cas counter old new)

#t

(inc)))))

(dec (lambda ()

(letrec ((old counter)

(new (- counter 1)))

(if (cas counter old new)

#t

(dec)))))

(t1 (spawn (inc)))

(t2 (spawn (dec)))

(t3 (spawn (dec))))

(join t1)

(join t2)

counter)

The computation of new is done by referring to counter instead of old (underlined
in the code). While we expect this program to return −1 (an inc and two decs), some
interleavings might produce different results, such as 0 with the following interleaving:

• thread t2 stores the value of counter (initially 0) in old,

• thread t1 increases the value of counter, counter is now equal to 1,

• thread t2 computes the value of new as (- counter 1), which evaluates to 0,

• thread t3 decreases the value of counter, counter is now equal to 0,

• thread t2 performs its cas: counter is indeed equal to old (i.e. 0), so counter is
set to the value of new (i.e. 0).

This program thus contains a harmful conflict involving only read operations and
write operations through cas. This conflict should be detected by the analysis. We will
describe how to filter out harmless conflicts but still detect conflicts such as this one in
Section 5.2.2.

5.2.1 Extracting Reads and Writes

To formalize the conflict analysis, we first describe two relations to extract information
about the addresses read from and written to by a context. This will allow us to have
a more generic analysis that can be extended by only modifying the definition of those
relations. This is necessary when we want to detect conflicts only involving writes from
set! expressions, or conflicts also involving writes from cas expressions. Those relations

are Read ⊂ Ĉontext × Âddr and Write ⊂ Ĉontext × Âddr . If the context ĉ contains a
read (resp. write) operation on address â, Read(ĉ, â) (resp. Write(ĉ, â)) will hold. They
are defined as follows.

Read(〈v, ρ̂, , 〉, ρ̂(v))

Write(〈(set! v ), ρ̂, , 〉, ρ̂(v))

Write(〈(cas v ), ρ̂, , 〉, ρ̂(v))

For the Write relation, we can drop the part of the definition related to cas if we are
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only interested in conflicts involving set!. Such a definition also allows to handle new read
and write operations as they are added to the language, without modifying the analysis.

5.2.2 Conflict Analysis

We define three relations: one to detect read/write conflicts (RWConflict ⊂ Exp), one to
detect write/write conflicts (WWConflict(e) ⊂ Exp), and one that combines those two to
detect any conflict (Conflict ⊂ Exp). A read/write conflict is detected when both a read
and a write on the same address may happen in parallel.

RWConflict(e)⇔ ∃〈T̂ , σ̂〉 ∈ êval(e),∃t̂id1, t̂id2 ∈ dom(T̂ ),

ĉ1 ∈ T̂ (t̂id1) ∧ Read(ĉ1, â) ∧

ĉ2 ∈ T̂ (t̂id2) ∧Write(ĉ2, â)

Write/write conflicts are handled similarly, except that we want to ensure that we are
not detecting a non-existent conflict due to the fact that two write operations are executed
by the same thread. This is the same problem we had with the MHP analysis, and it does
not occur in the RWConflict analysis as reads and writes arise from different expressions.
We have to be sure that there is indeed more than one concrete thread performing a write
on address â.

WWConflict(e)⇔ ∃〈T̂ , σ̂〉 ∈ êval(e),∃t̂id1, t̂id2 ∈ dom(T̂ ),

ĉ1 ∈ T̂ (t̂id1) ∧Write(ĉ1, â) ∧

ĉ2 ∈ T̂ (t̂id2) ∧Write(ĉ2, â) ∧
ĉ1 6= ĉ2

Finally, we combine the two kinds of conflicts to get our conflict analysis.

Conflict(e)⇔ RWConflict(e) ∨WWConflict(e)

From this formalization, it is possible to implement an analysis that also extracts
addresses and expressions involved in a conflict. From this extracted information, we can
then filter out some harmless conflicts (or at least, some conflicts that are considered
harmless assuming that cas is correctly used). As explained before, the typical use of cas
is that there is a read from a variable to get its current value, the new value is computed
from this value, and the cas is tried. If the cas fails, we try again the whole procedure,
reading again the content of the variable.

This will lead to a read/write and a write/write conflict between two threads perform-
ing this pattern, but this pattern can safely be filtered out. However, as soon as there is
more conflicts than just a read/write and a write/write conflict, the program might be
incorrect, even if cas are correctly retried, as Example 13 pointed out. This implies that
we are not able to filter out non-problematic conflicts for programs where, for each address
and pair of threads, there is more than a read/write and write/write conflict, such as in
the program of Example 14.

Example 14 (Parallel counter with false positives). This example is similar to Exam-
ple 13, with the correct implementation of dec. The first thread calls inc followed by
dec (underlined), which will create two read/write and two write/write conflicts with
the second thread which calls inc. This kind of conflicts is not harmful, but is detected
by our analysis as we have no way of differentiating them from harmless conflicts.

49



(letrec ((counter 0)

(inc (lambda ()

(letrec ((old counter)

(new (+ old 1)))

(if (cas counter old new)

#t

(inc)))))

(dec (lambda ()

(letrec ((old counter)

(new (- old 1)))

(if (cas counter old new)

#t

(dec)))))

(t1 (spawn (begin (inc) (dec))))

(t2 (spawn (inc)))

(join t1)

(join t2)

counter)

The pattern that we filter out is the following. For each address â involved in a conflict,
and for each pair of threads involved in the conflicts on â, we can ignore conflicts involving
â and the two threads if the only conflicts are:

1. a read/write conflict between the evaluation of a variable living at address â and a
cas on the same address â, and

2. a write/write conflict between two cas on the same address â.

It seems that this can be extended to conflicts where either only condition 1 is met (i.e.
there is only a read/write conflict), or both conditions are. Indeed, under the assumption
that cas are correctly retried, if there is only a write/write conflict between two cas on
the same address, one of the two cas will fail while the other will succeed, and the failing
one will be retried later.

This way of filtering conflicts has to be done after detecting all possible conflicts, since
we have to look at the number of conflicts involving the same address. This filtering
introduces unsoundness in the analysis, as some potentially harmful existing conflicts will
not be detected anymore. However, it seems that the undetected conflicts generally involve
a cas that is not retried when it fails. The detection of this case is handled in the next
section.

We conclude this section with Example 15 that discusses the importance of choosing
appropriate addresses to avoid detecting some false positives with the conflict analysis.

Example 15 (False positive conflict). Consider the following program.

(letrec ((x 1)

(y 1)

(f (lambda () (set! x (+ x 1))))

(t1 (spawn (f)))

(g (lambda () (set! y (+ y 1))))

(t2 (spawn (g))))

(join t1)

(join t2)

x)
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Suppose that during the abstract evaluation of this program, variables x and y both
point to the same store location. This will for example be the case if new addresses are
generated from the current value of the timestamp and if timestamps are implemented
as the k last call-sites. Since no call happens between the declaration of x and the
declaration of y, they both will be stored at the same address.

The conflict detection will thus detect a write/write conflict between the body of f

and the body of g because they both read and write from a variable that lives at the
same address. This is a false positive since there is no possible conflict in this program.

To avoid this, we can rely on the fact that CScheme does not allow pointer aliasing
to detect conflicts between accesses to variables instead of addresses, but as described
previously this will not be transposable for other languages. A better solution is to
improve the addresses to not only depend on the k last call-sites, but also on an identifier
linked to the variable. This identifier is found by associating a unique tag for every node
in the AST and using this tag as the identifier. Since x and y have a different tag, they
will be stored at different addresses (the timestamp component of their address will be
the same, but the tag component will be different).

5.3 Unretried cas Detection

When we use cas in a program, it is important to check its return value and to try it
again in case it failed. A cas that is not retried may lead to race conditions, as shown by
Example 16

Example 16 (Unretried cas leading to a race condition). Consider the following pro-
gram.

(letrec ((x 0)

(t1 (spawn (cas x 0 1)))

(t2 (spawn (cas x 0 2))))

(join t1)

(join t2)

x)

Depending whether thread t1 or thread t2 gets executed first, the outcome of the
program can either be 1 or 2.

5.3.1 Manipulating the State Graph

To detect whether a cas is retried or not when it fails, it is no longer sufficient to look
at individual states in the state graph. Instead, we need to look into the structure of the
state graph. Therefore, we need to manipulate this graph. We assume we have a function

ĝeval : Exp → Vertices × Edges, where Vertices = P(Σ̂) and Edges = P(Σ̂ × T̂ID × Σ̂).

This function is similar to êval , but gives us a state graph (defined by a set of vertices
and a set of edges) instead of a state set. More details on how to implement it are given
in Section 4.5. Note that edges are labeled by the thread identifier of the thread on which
a transition rule is applied. The edge (ς̂1, t̂id , ς̂2) means that we can reach state ς̂2 by

applying a transition rule on thread t̂id from the state ς̂1
We also need some relations that will make the formulas more clear.

• Successor ⊂ Edges × Σ̂× Σ̂ checks whether a state directly follows another state in
the given set of edge.

• Path ⊂ Edges × Σ̂× Σ̂ checks whether a path exists between to states.

51



• TidExp ⊂ T̂hreads × T̂ID × Exp checks whether a thread is currently evaluating a
given expression.

• PathToTidExp ⊂ Edges × Σ̂ × T̂ID × Exp checks whether there exists a path from
a given state to a state that evaluates a given expression on some thread.

The definitions of these relations are the following.

Successor(E, ς̂1, ς̂2)⇔ (ς̂1, , ς̂2) ∈ E
Path(E, ς̂1, ς̂2)⇔ Successor(E, ς̂1, ς̂2) ∨ (Successor(E, ς̂1, ς̂1′) ∧ Path(E, ς̂1′ , ς̂2))

TidExp(T̂ , t̂id , e)⇔ 〈e, , , 〉 ∈ T̂ (t̂id)

PathToTidExp(E, ς̂, t̂id , e)⇔ Path(E, ς̂, 〈T̂ ′, σ̂′〉) ∧ TidExp(T̂ ′, t̂id , e)

5.3.2 Unretried cas Analysis

A failed cas will be retried if the execution later reaches a state that evaluates the same
cas on the same thread identifier. A program thus contains an unretried cas if there is a
state such that:

• the state evaluates a cas on some thread,

• a successor state contains a #f control component in a context on the same thread,
indicating that the cas failed in this successor,

• there is no path to a state that evaluates the same cas on the same thread.

Note that by the same cas, we mean the same expression in the AST node. It is
necessary because requiring that we reach a cas on the same variable is not sufficient, as
the value written to the variable might be different. Thus, whether the first cas succeeded
or failed, we might have a different outcome. Also, requiring that we reach a cas with
the same values for the two last arguments will cause some problems, as it is possible,
and maybe frequent, depending on the abstraction used for values, that the values are
abstracted and it is then impossible to know whether two values are equal.

This analysis is formalized as the UnretriedCas(e) ⊂ Exp relation, defined as follows.

UnretriedCas(e)⇔ (V,E) = ĝeval(e) ∧ ∃〈T̂1, σ̂1〉 ∈ V,∃t̂id ∈ dom(T̂1) ∧

TidExp(T̂1, t̂id ,

e︷ ︸︸ ︷
(cas )) ∧

Successor(E, 〈T̂1, σ̂1〉, 〈T̂2, σ̂2〉) ∧

TidExp(T̂2, t̂id , #f) ∧

¬PathToTidExp(E, 〈T̂2, σ̂2〉, t̂id , e)

All the programs for which the UnretriedCas relation holds will possibly have a failed
cas not retried. This analysis may find false positives, as we have no way of ensuring
that the successor which evaluates to #f really corresponds to the same concrete thread
as the one evaluating the cas. However, this only happens under specific circumstances.
We should indeed have more than one context associated with t̂id in T̂2, which can often
be avoided by choosing an adapted abstract thread identifier allocation mechanism (the

n̂ewtid function, described in Section 4.3.4). Additionally, among those contexts associated

to t̂id there should be one related to another concrete thread evaluating to #f.
As for the conflict analysis, the unretried cas analysis is also unsound, because if we

find a path to a state evaluating the same cas on the same abstract thread, we cannot
know whether it corresponds to the same concrete thread (it might just be another concrete
thread that has been associated with the same abstract thread identifier), or if this state is
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reachable. The choice of the thread identifier allocation mechanism is thus important for
the analyses. In general, as soon as more than one concrete thread is associated with the
same abstract thread identifier, most of the analyses will see their usefulness diminished,
either because they will have a low precision, or because they might become unsound as
it is the case here.

5.4 Race Condition Detection

It is possible to combine the conflict analysis with the unretried cas analysis to detect race
conditions. In fact, any error found by one of these analyses may lead to a race condition.
We can thus define the relation RaceCondition ⊂ Exp as:

RaceCondition(e)⇔ Conflict(e) ∨UnretriedCas(e)

As both the conflict analysis and the unretried cas analysis may lead to false positives,
the race condition analysis may also have false positives. As we have shown that the
unretried cas analysis is unsound in some specific cases, the race condition analysis itself
is also unsound.

Also, this analysis does not check whether the race condition is harmful or not. A race
condition can be benign if it does not influence the result of the program. It is arguable
whether such races should be detected or not by a static analysis tool. They indeed
are harmless for the program, but might become harmful when the code of the program
evolves.

Example 17 (Benign race). The following program shows an example of a benign race
condition that is detected by this analysis. The variable x will always be set to 2 when
this program terminates, no matter how the threads are interleaved.

(letrec ((x 1)

(t1 (spawn (set! x 2)))

(t2 (spawn (set! x 2))))

(join t1)

(join t2))

5.5 Deadlock Detection

As shown in Example 9, cas can be used as a building block for implementing locks. A
naive implementation of locks can be the following. A lock is represented by a boolean
variable that is true when the lock is locked. The lock can be locked with the acquire

function and unlocked with the release function, implemented as follows:

(letrec ((lock #f)

(acquire (lambda ()

(if (cas lock #f #t)

nil

(acquire))))

(release (lambda ()

(set! lock #f))))

...)

As soon as we have the possibility of implementing locks, there is also a possibility of
having deadlocks if a thread is trying to acquire a lock that is currently held by another
thread that will not release this lock (e.g. if it is itself trying to acquire a lock held by the
first thread). Example 18 shows what the state graph of a deadlock looks like.
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Example 18 (Deadlock involving one thread). We can simulate a deadlock with only
one thread trying to acquire a lock that is initially already acquired, in order to have a
relatively small state graph. The following program does exactly this.

(letrec ((lock #t) ; lock already locked

(f (lambda ()

(if (cas lock #f #t)

nil

(f)))))

;; Trying to acquire the lock, which is already locked

(f))

The call to cas in f will always fail as the lock is already acquired. This can be seen
in the portion of the state graph shown in Figure 5.1. We can indeed see that the call
to f will never terminate as the execution will be blocked inside a cycle.

Figure 5.1: Portion of the state graph related to a deadlock.

5.5.1 False positives

If we detect deadlocks from such patterns in the state graph, we will get many false
positives. Indeed, when two threads want to acquire the same lock, and if thread 1
acquires it first, we can find a cycle where only thread 2 gets executed and continuously
fail to acquire the lock, as thread 1 never gets executed along this cycle. While this
might be a possibility, we do not want to detect such deadlocks as any real scheduler will
eventually execute thread 1 again, allowing it to release its lock and avoiding the deadlock.
We thus want to restrict such cycles in the graph to cycles where more than one thread
has performed a transition.

There is one exception to this restriction. We still want to detect deadlocks involving
a single thread such as in Figure 5.1. If the cycle starts at a state with only one cas, and
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every other thread is currently evaluating a join, then we detect this case as a deadlock.
For it to be a real deadlock, the joins should all be blocked because of the thread doing
the cas. For example, if thread 3 joins on thread 2 which joins on thread 1 which itself
is continuously doing a cas, there is a deadlock. However, the case where there is no
deadlock while having a cycle starting at a state with a single cas and multiple joins,
seems quite rare. Requiring only cas and join in a state without further restriction does
not introduce many false positives (we will investigate this in Section 6.5).

5.5.2 Precision

The main problem with our approach to detect deadlocks is that the value of the lock can
be abstracted in two ways: the abstract value of the lock can be abstracted, or the abstract
address where the value is stored can be merged with another address. As soon as the
value of the lock gets abstracted (for example, if we know that the lock is a boolean but
we do not know whether it is true or false), there might be no way of knowing whether the
call to cas succeeded or not. This results in a state graph depicted in Figure 5.2, where
we still have the cycle involving the cas, but there also exists an exit path of this cycle,
due to the fact that we do not know whether the lock is locked or not. Such a pattern in
a state graph cannot be distinguished from a correctly used cas, as both will have a cycle
when the cas fails, and an exit branch when the cas succeeds.

Figure 5.2: Part of the state graph related a deadlock where the value of the lock is too
abstract.
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5.5.3 Formalization

Since every correct use of cas will be indistinguishable from a deadlock, we give an unsound
analysis that only detects a deadlock when, if the cycle is reached, it is sure that there will
be a deadlock. This deadlock detection requires to look into more than one state, and,
unlike the unretried cas detection of Section 5.3 where we looked for a failed cas with
no path to itself when it failed, we are now looking for a path from a failed cas to itself.
We also need to be sure that the cas will fail, i.e. it should not have a successor where it
succeeded. Furthermore, we ensure that either one thread is involved in the deadlock and
other threads are blocked by joins, or the deadlock involves more than one thread.

We need the following helper relations.

• Cycle ⊂ Edges × Σ̂ checks whether there exists a cycle from a state to itself in the
state graph.

Cycle(E, ς̂)⇔ Path(E, ς̂, ς̂)

• FailingCas ⊂ Edges × Σ̂× T̂ID checks whether there is a cas evaluated at the given
node on the given thread, and ensures that this cas cannot succeed.

FailingCas(E, 〈T̂ , σ̂〉, t̂id)⇔TidExp(T̂ , t̂id , (cas )) ∧
¬(Successor(E, 〈T̂ , σ̂〉, 〈T̂ ′, σ̂′〉) ∧

TidExp(T̂ ′, t̂id , #t))

• NumberOfNotJoins ⊂ T̂hreads× T̂ID×N counts, for a given thread in a given state,
the number of expression that do not evaluate a join.

NumberOfNotJoins(T̂ , t̂id , n)⇔ |{ĉ ∈ T̂ (t̂id) s.t. ĉ 6= 〈(join ), , , 〉}| = n

• TransitionsOnPath ⊂ Edges × Σ̂ × Σ̂ × P(T̂ID) can be used to compute the set of
threads for which a transition rule is used, along a path.

TransitionsOnPath(E, ς̂1, ς̂2,Tr)⇔((ς̂1, t̂id , ς̂2) ∈ E ∧ Tr = {t̂id}) ∨

((ς̂1, t̂id , ς̂1′) ∈ E ∧ TransitionsOnPath(E, ς̂1′ , ς̂2,Tr ′) ∧

Tr = Tr ′ ∪ {t̂id})

• NumberOfTransitionsOnCycle ⊂ Edges × Σ̂ × N counts the number of different
threads for which a transition rule is used, on a cycle from a given state to itself.

NumberOfTransitionsOnCycle(E, ς̂, n)⇔ TransitionsOnPath(E, ς̂, ς̂ ,Tr) ∧ |Tr | = n

The deadlock analysis is formalized by the Deadlock ⊂ Exp relation.

Deadlock(e)⇔ (V,E) = ĝeval(e) ∧ ∃〈T̂ , σ̂〉 ∈ V,∃t̂id ∈ dom(T̂ ) ∧

FailingCas(E, 〈T̂ , σ̂〉, t̂id) ∧
Cycle(〈T̂ , σ̂〉) ∧

((∀t̂id
′
6= t̂id ,NumberOfNotJoins(T̂ , t̂id

′
, 0) ∧

NumberOfNotJoins(T̂ , t̂id , 1)) ∨
(∃n > 1,NumberOfTransitionsOnCycle(E, 〈T̂ , σ̂〉, n))

This analysis might not seem useful because in most programs values will eventually
become abstracted and it will not be possible to distinguish whether a cas will succeed
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or fail. However, as our (naive) implementation of locks explicitly sets the value of the
lock from #f to #t and from #t to #f, this loss of precision will generally not happen for
such locks and we will always know whether the lock can be successfully acquired or not.
The only case where the lock value will be abstracted is when its location in the store gets
joined with another value because another variable is stored at the same address.

This analysis can thus be used to analyze programs that make use of such locks (or any
other implementation of locks that preserves this property), even though it will generally
not be able to detect deadlocks in a program that uses cas in a more general way (that
is, by eventually setting a variable used in a cas to an abstracted value).

5.6 Conclusion

In this chapter, we presented several useful concurrency analyses. We first improved Might
and Van Horn’s MHP analysis by avoiding detection of false positives when checking
whether an expression may be evaluated in parallel with itself. This analysis inspired our
conflict analysis, where we look for concurrent accesses to the same store addresses. As
this analysis needs to detect whether a write operation may happen in parallel with itself,
it takes advantage of our improvement in the MHP analysis.

The other analyses required to look into the relation between multiple states in the
state graph, and we introduced the necessary formalisms to do so. The unretried cas

analysis detects when a failed cas is not retried, in which case it may lead to a race
condition. By combining the conflict analysis with the unretried cas analysis, we were
able to express a higher-level race condition analysis. Finally, we described a deadlock
analysis. This analysis cannot distinguish some deadlocks from correct uses of cas, and
therefore it is made unsound to avoid detecting too many false positives.

Any analysis that requires to look into more than one node of the state graph is
unsound. This is the case for the unretried cas analysis and the deadlock analysis. The
reason is that, as the abstract interpreter has a finite thread map, multiple threads might
be assigned to the same thread identifier. Therefore, we cannot be sure that the evolution
of an abstract thread from one state to the next corresponds to the evolution of a single
concrete thread. Consequently, these analyses become unsound, meaning that potential
defects might not be found. However, as soon as more than one thread is assigned to the
same thread identifier, precision plummets and the usefulness of the analysis decreases
anyway. It is acceptable to have an unsound analysis in this case as it will remain sound
until the program becomes too complex to analyze.

The analyses described in this chapter will be validated in Chapter 6. The problem of
the potentially large amount of false positives for the deadlock analysis will be addressed
in Chapter 8 by introducing first-class locks into the language.
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Chapter 6

Validation of the Analyses

In this chapter, we verify that the analyses described in the previous chapter actually
detect the faults they were designed to detect, based on several examples. Here, we are
only interested in whether each analysis works as expected and not in its running time.
Most of the time taken to perform an analysis is spent on building the state graph, which
is what is actually measured by the benchmarks of the PCESK machine, in Chapter 7.
The analysis only needs to traverse this state graph, which often take a negligible amount
of time compared to the time taken to compute this graph.

The results of each analysis are summarized in a table in each section, describing
the complexity of the examples, the expected results, and the results obtained with the
analysis. The complexity of an example depends on the number of AST nodes the source
code contains, as well as the number of threads that are involved. For the deadlock
analysis, the number of locks involved in each example is also given.

The results are given in terms of total number of defects found, how many among them
are true positives (tp), and how many are false positives (fp). Each result also implicitly
has information about the number of true negatives (tn), and false negatives (fn).

• True positives are correctly detected defects. The results of an analysis on an example
might produce multiple true positives. For example, if a program contains two race
conditions and both are detected, there are two true positives.

• True negatives correspond to the correct detection of the absence of defects. The
result of an analysis on an example might produce either 0 or 1 true negatives. There
is no true negative when the program doesn’t contain any of the defects the analysis
should find, but the analysis has false positives. That is, the analysis considers the
program to have defects, while it doesn’t. There is one true negative if the program
doesn’t have any of the defects the analysis should find, and the analysis correctly
doesn’t detect any defect.

• False positives are incorrectly detected defects. There can be 0 or more false positives
on an example for an analysis. Ideally, an analysis should minimize the number of
false positives.

• False negatives are missed defects. That is, an analysis has false negatives on a
program that contains defects if the analysis doesn’t detect all the defects it should
find on the program. An analysis for a defect on an example has n false negatives
if the example does contain n′ occurrences of this defect, but the analysis only finds
n′ − n occurrences among the true occurrences of the defect.

Minimizing the number of false negatives is more important than minimizing the num-
ber of false positives. Indeed, having false negatives implies that some programs will be
labeled as correct even though they might contain bugs that the analysis should have de-
tected. On the other hand, having false positives implies that correct programs might be
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labeled as incorrect, which is considered less critical than identifying an incorrect program
as correct.

For each analysis, we compute the precision, the recall and the accuracy as follows:

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn

Accuracy =
tp+ tn

tp+ tn+ fp+ fn

The precision tells us how many defects founds were indeed real defects. A complete
analysis has a precision of 100%. The recall tells us how many defects were found among
all the existing defects. A sound analysis has a recall of 100%. The accuracy tells us how
the analysis performed overall. An analysis without any error will have an accuracy of
100%.

Note that the polyvariance (k) of the abstract interpretation did not influence the
results presented in this chapter. Having k = 0 is thus sufficient to use these analyses for
the examples shown in this chapter.

6.1 May-Happen-in-Parallel Analysis

To check whether the MHP analysis works as expected, we use two parallel counter exam-
ples that use set!: the first example (Example 19) protects the critical section by a lock,
while the second (Example 20) does not protect it. Those two examples are given below.

We are interested into two expressions: the read expression denoted er and the write
expression denoted ew. In the first example, as the critical section is protected by a lock,
we should have ¬MHP(er, ew), as well as ¬MHP(ew, ew). However, in the second example,
as no locks are used to ensure that only one thread enters the critical section at a time,
there exists execution paths were those expressions may be evaluated in parallel (both for
ew and er, and ew and itself).

Example 19 (pcounter-mutex.scm). This is the same example as Example 9, anno-
tated to show er and ew.

(letrec ((lock #f)

(acquire (lambda ()

(if (cas lock #f #t)

nil

(acquire))))

(release (lambda ()

(set! lock #f)))

(counter 0)

(inc (lambda ()

(acquire)

(set! counter (+ counter︸ ︷︷ ︸
er

1))︸ ︷︷ ︸
ew

(release)))

(t1 (spawn (inc)))

(t2 (spawn (inc))))

(join t1)

(join t2)

counter)
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Example 20 (pcounter-race.scm). This is the same example as Example 12, anno-
tated to show er and ew.

(letrec ((counter 0)

(inc (lambda ()

(set! counter (+ counter︸ ︷︷ ︸
er

1))︸ ︷︷ ︸
ew

))

(t1 (spawn (inc)))

(t2 (spawn (inc))))

(join t1)

(join t2)

counter)

The results found by our implementation and by Might and Van Horn’s original MHP
analysis (ran through our implementation) are given in Table 6.1.

Example Length Threads Query Expected MVH’s MHP Our MHP

pcounter-mutex.scm 45 2
MHP(er, ew) no no no
MHP(ew, ew) no yes no

pcounter-race.scm 24 2
MHP(er, ew) yes yes yes
MHP(ew, ew) yes yes yes

Precision 66% 100%
Recall 100% 100%

Accuracy 75% 100%

Table 6.1: Results of the MHP analysis.

6.2 Conflicts Detection

To verify the validity of the conflict detection analysis, we run it on various examples with
or without conflicts. Our implementation contains multiple variations (called targets) of
the conflict analysis:

• the setconflicts target finds conflict that only involves set!, and no cas,

• the allconflicts target finds conflict that can involve set! and/or cas,

• the conflicts target finds the same conflicts as the allconflicts target, but filters
out those that are not considered are harmful, as explained in Section 5.2.2.

In general, it is sufficient to run the conflicts target as it will detect every set!

conflicts as well as harmful cas conflicts, without producing too much false positives.
However, we run the three analyses and show their result in Table 6.2. The examples used
are the following.

• pcounter.scm: Example 8, page 32, a parallel counter correctly implemented with
cas.

• pcounter-mutex.scm: Example 9, page 33, a parallel counter correctly implemented
with locks, themselves implemented with cas.

• pcounter-race.scm: Example 12, page 46, a parallel counter incorrectly imple-
mented and containing a race condition due to read/write and write/write conflicts.
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• pcounter-buggy.scm: Example 21, page 61, a parallel counter containing a non-
trivial implementation error, leading to a race condition.

• false-pos.scm: Example 15, page 50, containing a possible false positive if allocated
addresses only consists of the last k call-sites.

• benign.scm: Example 17, page 53, containing a race condition not influencing on
the result of the program.

• race-cas.scm: Example 16, page 51, containing a race condition due to an unretried
cas.

• race-set-cas.scm: Example 22, page 62, also containing a race condition due to
an unretried cas.

Example 21 (Subtle cas conflict). The following program is a variant of Example 8
with a subtle error. When computing the new value of counter in the variable new,
we refer to counter itself instead of old. Even though the outcome of this program is
not affected by this conflict (if one thread modifies counter between the computation
of old and new, the cas will fail as the counter value can only increase in this particular
program), it might be problematic in other situations, where the value of counter might
be changed when before computing new and restored before doing the cas. This problem
is similar to what was explained in Example 13, which contains a real race condition but
takes much more time to analyze, as it defines a decrease operation and involves three
spawned threads.

(letrec ((counter 0)

(f (lambda ()

(letrec ((old counter)

;; Bug introduced here

(new (+ counter 1)))

(if (cas counter old new)

#t

(f)))))

(t1 (spawn (f)))

(t2 (spawn (f))))

(join t1)

(join t2)

counter)

As noted previously the setconflicts target only detects conflicts involving set!, and
we can see that it correctly detects the conflicts in the program containing such conflicts
(pcounter-race.scm, benign.scm)

The allconflicts target detects every conflicts involving set! or cas, without fil-
tering anything. We can see that, as we expected, it produces many false positives.

The false positive program is correctly handled by all the targets, as we use timestamps
with a tag component and not only the last k call sites, as explained in Section 5.2.2.

As no effort has been made to avoid detecting benign race conditions (that is, race
conditions that does not affect the outcome of the program), the three analyses detects a
conflict in the benign.scm program, even though this conflict is benign.

Finally, the race-cas.scm program contains a race condition which is not detected by
the conflicts target because it is filtered out, since it only involves a conflict between
two cas on the same address, which could happen in a correct program. This example
will however be detected as problematic by the unretried cas analysis.
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Example Length Threads Expected
conflicts setconflicts allconflicts

found tp fp found tp fp found tp fp

pcounter.scm 34 2 0 0 0 0 0 0 0 2 0 2
pcounter-mutex.scm 45 2 0 0 0 0 0 0 0 1 0 1
pcounter-race.scm 24 2 2 2 2 0 2 2 0 2 2 0
pcounter-buggy.scm 34 2 3 3 3 0 0 0 0 3 3 0

false-pos.scm 34 2 0 0 0 0 0 0 0 0 0 0
benign.scm 17 2 0 1 0 1 1 0 1 1 0 1
race-cas.scm 20 2 1 0 0 0 0 0 0 1 1 0

race-set-cas.scm 19 2 1 1 1 0 0 0 0 1 1 0

Precision 86% 66% 64%
Recall 86% 29% 100%

Accuracy 81% 45% 62%

Table 6.2: Results of the conflict analysis.

6.3 Unretried cas Detection

When a cas that fails is not retried, it may lead to a race condition, such as in Example 16.
Note that this example also contains a conflict, which is not detected by the conflict

target, as we filter out some patterns that are considered harmless. Such a conflict is
however harmful, as the outcome of the program will depend on which thread gets executed
first, but this is due to the fact that cas is not retried when it fails. By combining the
conflict target and the unretriedcas target we can thus detect many potential errors.

A variation of this example is Example 22, which involves a conflict between a set!

and a cas. The results of our unretried cas analysis are given in Table 6.3.

Example 22 (race-set-cas.scm). The outcome of the following program depends on
which thread gets executed first:

(letrec ((x 0)

(t1 (spawn (set! x 2)))

(t2 (spawn (cas x 2 1))))

(join t1)

(join t2)

x)

Example Length Threads Expected
unretriedcas

found tp fp

pcounter.scm 34 2 0 0 0 0
pcounter-mutex.scm 45 2 0 0 0 0
pcounter-race.scm 24 2 0 0 0 0
pcounter-buggy.scm 34 2 0 0 0 0

false-pos.scm 34 2 0 0 0 0
benign.scm 17 2 0 0 0 0
race-cas.scm 20 2 2 2 2 0

race-set-cas.scm 19 2 1 1 1 0

Precision 100%
Recall 100%

Accuracy 100%

Table 6.3: Results of the unretried cas analysis.
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The unretried cas analysis doesn’t detect any unretried cas when there is none, as
expected, and correctly detects them on the two concerned examples. Note that since the
race-set-cas.scm example contains not only an unretried cas, but also a write/write
conflict between the cas and the set!, it is already detected as flawed by the conflict
analysis.

6.4 Race Condition Detection

The race condition analysis consists of combining the conflict analysis with the unretried
cas analysis. We have seen that many harmful conflicts are detected by the conflicts
analysis, and those who were not contain unretried cas that were detected by the corre-
sponding analysis. We were not able to find any harmful example that is not detected
by one of the two analyses and thus believe that by combining these two analyses, it is
possible to find a great number of race conditions in programs.

We can combine Tables 6.2 and 6.3 to obtain Table 6.4. The two unretried cas detected
allows us to detect the missing race condition of the race-cas.scm example. As the race
condition in the race-set-cas.scm example is already detected, the unretried cas does
not bring more information. We can see an improvement in the recall and accuracy of the
analysis, compared to races found by only using the conflict analysis.

Example Length Threads Expected
race

found tp fp

pcounter.scm 34 2 0 0 0 0
pcounter-mutex.scm 45 2 0 0 0 0
pcounter-race.scm 24 2 2 2 2 0
pcounter-buggy.scm 34 2 3 3 3 0

false-pos.scm 34 2 0 0 0 0
benign.scm 17 2 0 1 0 1
race-cas.scm 20 2 1 1 1 0

race-set-cas.scm 19 2 1 1 1 0

Precision 88%
Recall 100%

Accuracy 90%

Table 6.4: Results of the race condition analysis.

6.5 Deadlock Detection

As explained in Section 5.5, the deadlock analysis does not work as soon as the value of
the variable that is the source of the deadlock becomes too abstracted. We however state
that it works as long as we want to detect deadlocks involving locks implemented on top
of a (cas lock #f #t) and no loss of precision happens due to the finiteness of the store,
as this cas will never introduce by itself a loss of precision in the value of the lock. The
only possible loss of precision happens when two different variables get joined in the store,
which we generally want to avoid as it is a major cause of imprecision in many analyses.

We verify this behavior by running this analysis on the following examples. The results
are given in Table 6.5.

• deadlock-simple.scm: Example 18, page 54, containing a deadlock involving a
single thread.

• deadlock-abstract.scm: a program similar to deadlock-simple.scm, but we force
the initial lock value to be abstract, by setting it to the result of evaluating (= 1

1), which is AbsBoolean in our implementation.
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• deadlock1.scm: Example 23, page 64, containing a deadlock involving one lock
shared among two threads, where both threads acquire the lock and none release it.

• deadlock1-release.scm: a program similar to deadlock1.scm, but we correctly
release the lock in one of the two threads, removing one of the two possible deadlocks.

• deadlock.scm: Example 24, page 64, containing a deadlock involving two locks
shared among two threads, with a circular dependency in the order of lock acquisi-
tion.

• pcounter-mutex.scm: Example 9, page 33, not containing a deadlock but using
locks to ensure that the critical section is reached by only one thread at a time.

Example Length Threads Locks Expected
deadlocks

found tp fp

deadlock-simple.scm 15 0 1 1 1 1 0
deadlock-abstract.scm 18 0 1 1 0 0 0

deadlock1.scm 27 1 1 2 2 2 0
deadlock1-release.scm 29 1 1 1 1 1 0

deadlock.scm 65 2 2 2 4 2 2
pcounter-mutex.scm 45 2 1 0 0 0 0

Precision 75%
Recall 85%

Accuracy 70%

Table 6.5: Results of the deadlock analysis.

Example 23 (Deadlock involving one lock and two threads). The following program
acquires a lock in two different threads, forgetting to release it. There is two possibilities
of deadlock: either the main thread acquires the lock first and thread t1 can never
acquire its lock, creating a deadlock as the main thread waits thread t1; or thread t1

acquires the lock first and the main thread gets blocked trying to acquire the lock.

(letrec ((lock #f)

(acquire (lambda ()

(if (cas lock #f #t)

nil

(acquire))))

(release (lambda ()

(set! lock #f)))

(t1 (spawn (begin

(acquire)

; forgot to release the lock!

))))

(acquire)

(join t1))

Example 24 (Deadlock involving two locks and two threads). This programs is a typical
case of cyclic dependencies between locks: thread t1 wants to acquire lock a then lock b,
while thread t2 wants to acquire lock b then lock a, thus possibly leading to a deadlock
(but not always).
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(letrec ((lock-a #f)

(lock-b #f)

(acquire-a (lambda ()

(if (cas lock-a #f #t)

nil

(acquire-a))))

(release-a (lambda ()

(set! lock-a #f)))

(acquire-b (lambda ()

(if (cas lock-b #f #t)

nil

(acquire-b))))

(release-b (lambda ()

(set! lock-b #f)))

(t1 (spawn (begin

(acquire-a)

(acquire-b)

(release-b)

(release-a))))

(t2 (spawn (begin

(acquire-b)

(acquire-a)

(release-a)

(release-b)))))

(join t1)

(join t2))

As expected, the deadlock detection correctly detects deadlocks in the cases where
there is no loss of precision on the value of the lock. On example deadlock-abstract.scm
however, as we force this value to be abstract, the deadlock is not found anymore, as a
cycle exists but it cannot be distinguished from a correct use of cas.

The deadlock1.scm and deadlock1-release.scm programs shows that the analysis
detects, as expected, one fewer possible deadlock when one of the threads correctly releases
the lock.

Note that two false positives are detected on the deadlock.scm example. Due to the
size of the state graph (around 6000 nodes), it has not been feasible to further investigate
the source of those false positives.

On the pcounter-mutex.scm example, the analysis does not detect anything, as this
program is deadlock-free.

One major downside of this analysis is the time it takes. As said previously, this
time is mostly spent on building the state graph, and the problem is not a consequence
of the analysis itself, but of the reason why this state graph takes time to build. For
simple examples it stays relatively fast (around 4s on deadlock-simple.scm, 1min30s on
pcounter-mutex.scm), but as soon as the program gets more complicated (especially if
it uses many locks), the analysis time explodes. On deadlock.scm, the analysis takes 24
minutes to complete. This is due to the fact that, because locks are implemented as loops
over calls to cas, the state space gets really big as the number of possible intervealings
between the thread locks increases.

The deadlock analysis can thus detect deadlocks on simple programs involving up
to two locks and two threads, but more complicated programs do not terminate in a
reasonable amount of time or need too much memory.
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6.6 Conclusion

In this chapter, we validated the analyses developed in the previous chapter. We showed
that our adaptation of Might and Van Horn’s MHP analysis is more precise than the
original, as it does not detect false positives where an expression was considered to always
be evaluated in parallel with itself as soon as it was evaluated once.

We compared the different approaches of detecting memory access conflicts: detecting
only conflicts involving set!, detecting every conflict, or filtering some patterns of conflicts.
As shown in Table 6.2, detecting all the conflicts seems sound but has low precision. By
allowing unsoundness we can increase this precision, while the missed conflicts are detected
by the unretried cas analysis.

The unretried cas analysis works as expected, and no example invalidating it was
found. By combining this analysis with the conflict analysis that filters out some pat-
terns, we obtain an analysis that can detect every race condition present in our example
programs, with only one false positive.

Finally, even with the limitations we identified in the previous chapter when defining
the deadlock analysis, we observed that this analysis is able to detect a certain number
of deadlocks with good precision. As long as the locks involved in the programs are used
through the user-defined acquire and release functions, the loss of precision is limited
(it can only come from the finiteness of the store) and deadlocks are detected.

We did not mention the time taken for each analysis in this chapter. This is done in
the benchmarks of the next chapter, which uses the same examples as the ones used here
for the validation.
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Chapter 7

Implementation and Benchmarks

The PCESK machine described in Chapter 4 has been implemented in OCaml and is
publicly available1. In this chapter, we describe this implementation and the results of
some benchmarks made to measure the impact of the refinements introduced in Sec-
tions 3.1.4 and 4.4 on the CESK and the PCESK machines.

7.1 Implementation of the CESK and PCESK Machines

This section describes the features of the implementation and how to use them. We then
go into more details on the implementation and its relation to what has been described
until now in this work. A more detailed description of how to use the implementation can
be found in the README provided with the source code.

7.1.1 Features

This implementation supports the full CScheme language described in Section 4.1 with
some additions:

• basic operations are supported on primitive values (addition, subtraction, compari-
son, negation, . . . ),

• lists can be constructed and accessed with the conventional Scheme operators (cons,
car, cdr, empty?),

• call/cc is supported.

All of the improvements discussed in Section 4.4 (abstract counting, abstract thread
counting, thread removal, abstract garbage collection, and state subsumption) are imple-
mented, and can be turned on or off by using arguments when launching the executable.
Abstract counting, abstract thread counting and thread removal are turned on by default,
but not garbage collection nor state subsumption, as they can have a negative impact on
the analysis time. Polyvariance (the value of k, used to generate new addresses) can be
specified. By default, support for parallel special forms is not turned on, and the CESK
machine is used instead of the PCESK machine.

The input program is parsed, and a unique tag is assigned to every node of the AST, to
be able to differentiate two nodes with the same expressions. Multiple operations (called
targets) can then be run on this input program.

• By default, an abstract interpretation of the program is performed, the state graph
is computed and can be written to a file in order to inspect it manually.

1https://github.com/acieroid/pcesk
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• The parsed AST can be printed with tag annotations to be able to find the tag
corresponding to an expression. Those tags are needed to specify expressions on
which to perform the MHP analysis.

• The MHP analysis can be carried out if two expression tags are given. The abstract
state graph will be built and then inspected in order to check whether the two
expressions may happen in parallel in the given program, as described in Section 5.1.

• Multiple targets are available for detecting conflicts, and correspond to detecting
only conflicts involving set!, conflicts that also involves cas, or all conflicts except
those that match some patterns that are assumed correct.

• The unretried cas analysis of Section 5.3 can be performed.

• The deadlock detection analysis of Section 5.5 can be performed.

Example 25 (Detection of conflicts with the implementation). To analyze the pro-
gram of Example 12, which contains a race condition due to a conflict, we can run the
implementation as follows.

$ ./main.byte -i input/pcounter-race.scm -target conflicts -p

The -p switch enables the use of the PCESK machine instead of the CESK machine,
thus allowing the use of the parallel operators. The output is the following.

2 conflicts detected between the following pairs of expressions:

(set! counter (+@9 counter@10 1@11)@8)@6, (set! counter (+@9 counter@10 1@11)@8)@6

(set! counter (+@9 counter@10 1@11)@8)@6, counter@10

As can be seen in the output, this program contains two conflicts (read/write and
write/write), and the corresponding expressions are printed along with their tag so that
they can be located in the program.

7.1.2 Architecture

The architecture of the implementation puts a great emphasis on separating the different
components, and the possibility to provide alternative implementations for each of those
components. Also, there is a clear separation between the implementation of the sequential
CESK machine and the implementation of the PCESK machine, although the PCESK
machine uses the CESK machine for the sequential transitions, as described in 4.2.

The implementation is organized in a number of components, which are themselves
composed of one or more modules, described in the remainder of this section. Note that a
module with a name in all capitals is a module type, and can be seen as an interface that
modules of this type should satisfy.

AST, Lexer and Parser

The Ast module defines the abstract syntax for CScheme. This AST is defined through
the types var corresponding to Var , exp corresponding to Exp, and node associating an
Exp with a unique tag.

The modules Lexer and Parser respectively define the following functions that can be
plugged together to parse a program from an input channel:

Lexer.lex : in_channel -> Tokens.scheme_token Stream.t

Parser.parse : Tokens.scheme_token Stream.t -> Ast.node
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Types

The Types module defines all the types needed by the CESK and PCESK machines:

• primitive values (Val),

• intermediate abstracted values (which do not form a lattice, but are used by the

Lattice module to define V̂al),

• continuations (Kont),

• timestamps (Time),

• addresses (Addr),

• thread identifiers (TID)

This module also defines operations on the intermediate abstracted values, in particular
to know whether two such values can be merged. For example, AbsUnique (Integer 1)

can be merged with AbsUnique (Integer 2) and gives AbsInteger, but AbsInteger

cannot be merged with AbsBool since no top element is defined. In the set lattice, joining
these elements gives the lattice element {AbsInteger, AbsBool}.

Lattice and SetLattice

The LATTICE module type defines an interface that lattice implementations should satisfy,
containing the usual operations on lattices: abstraction, join (t), meet (u), bottom ele-
ment. It also provides a way to define unary and binary operations on the elements of a
lattice.

The SetLattice module is an implementation of this interface that implements the
conventional set lattice (where a lattice element is a set of values). When joining two
lattice values, it uses the merge operation defined on intermediate abstracted values in the
Types module to know if it is possible to merge values contained inside the lattice. When
adding an intermediate value to the lattice, if a merge is possible with this value and a
value contained inside the lattice, the values are merged, else the new value are added to
the set of values.

Address

The ADDRESS module type defines an interface for addresses, so that other modules can
be parameterized on such adresses. However, the actual definition of addresses is done in
the Types module.

Environment

The ENV module type defines an interface for environments that requires environments
to define the various operations that will be needed: lookup, extend, restrict, range,
comparison, subsumption. A map-based implementation of such environments is given
(module Env), where an environment is a map (OCaml’s Map.S) that binds strings to
addresses.

Store

The STORE module type defines the interface for stores, and also provides a map-based
implementation (module Store). The store is implemented as an OCaml functor2 that
takes two parameters: an ADDRESS module and a LATTICE module.

A store should implement the conventional operations (lookup, update, join, narrow,
comparison, subsumption).

2An OCaml functor is a higher-order module, i.e. a module that is parameterized by other modules.
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Exploration

The EXPLORATION module type defines the strategy used to explore the state graph. It pro-
vides two implementation: one performing a depth-first search (Dfs), the other performing
a breadth-first search (Bfs). By default, the breadth-first search module is used.

CESK

The Cesk module aggregates all the previous modules to define a CESK machine that
supports the CScheme language, except for spawn and join. An implementation of a
simplified version of the CESK machine has already been described in Section 3.1.5. The
main differences are that we support a bigger language, and compute the state graph
instead of only looking at the final state as we did in the described implementation.

This component therefore also defines a module G implementing the state graph, rep-
resented by the type G.t. The CESK module provides two functions:

• step : state -> state list: given a state (ΣCESK), return all the possible re-
sults of applying (→̂) to this state, and

• eval : Ast.node -> G.t: given an AST node, return the computed state graph.

It is in fact the ĝeval of Section 5.3.1, which is based on êval , defined in Section 4.3.6.

The exploration method can be tuned by the user by overriding a runtime parameter
used in the eval function. Other parameters can be tuned to activate other submodules
such as garbage collection and state subsumption.

The Garbage collection submodule provides the two following functions.

• reachable : state -> AddressSet.t computes the set of addresses that are reach-
able in a CESK state. This corresponds to the R : ΣCESK → P(Addr) function
defined in Section 3.1.4.

• gc : state -> state performs garbage collection on a state, freeing the addresses
that are not reachable, and returns the collected state. This corresponds to the
transition function (→′) : ΣCESK → ΣCESK

The gc function is used in CESK’s step when garbage collection is activated. However,
as explained in Section 4.4.4, to perform garbage collection on the PCESK machine it is
necessary to take all the threads into account, else one address might be collected by
the CESK machine corresponding to a thread, while it is accessible in another thread.
Therefore, the PCESK machine will make use of the reachable function to compute by
itself what can safely be removed, instead of using gc directly.

PCESK

The Pcesk module has a very similar structure as the Cesk module except that it imple-
ments the full CScheme language, including spawn and join. Its definition is described in
Section 4.2 and rely on the Cesk module to perform sequential transitions as well as other
actions such as abstract garbage collection.

The interface is identical to the CESK component, except that the step functions uses
pstates (Σ) and represents (⇒̂) instead of using states (ΣCESK) and representing (→̂).
Also, the eval function returns a graph whose vertices are pstates instead of states.

Analysis

A module exists for each analysis described in Chapter 5.
The Mhp module implements the may-happen-in-parallel analysis by defining the func-

tion mhp : G.t -> int -> int -> bool. This function takes a state graph built by

70



Pcesk.eval, two tags corresponding to the two expressions that we are interested into,
and returns a boolean indicating whether those two expressions may happen in parallel or
not.

The Conflict module implements the different kinds of conflict analyses by defin-
ing the function conflicts : ?handle cas:bool -> ?ignore unique cas:bool ->

G.t -> Ast.node -> (Ast.tag * Ast.tag * Types.addr) list. This function looks
for conflicts in the graph given in the first non-optional argument, which is built by
Pcesk.eval from the expression given in the second non-optional argument. This func-
tion will return the list of conflicts as a triple containing the two expressions involved in
the conflict as well as the address concerned by the conflict. The two optional arguments
correspond to the cases described in Section 5.2: when handle cas is true, cas is handled
as a write operation, and when ignore unique cas is true, the pattern corresponding
to a correct use of cas is not treated as a conflict (only a write/write conflict between two
cas involving the same variable, or a read/write and a write/write conflict involving the
same variable).

The Unretried cas module implements the unretried cas detection by defining the
function unretried cas : G.t -> Ast.tag list, which takes a state graph as argu-
ment, and returns the tags corresponding to the expressions where an unretried cas has
been detected.

The Deadlock module implements the deadlock detection by defining the function
deadlock : G.t -> (Types.tid * Ast.tag) list, which takes a state graph as argu-
ment, and returns a list containing the thread identifier corresponding to a thread involved
in the deadlock, as well as the expression from which the deadlock has been detected (that
is, the cas from which the cycle in the graph is found).

Main

The Main module glues together the other modules in order to present a unified interface
to the user. It will call either the CESK’s or the PCESK’s eval function to build a state
graph from the input program, invoke the analysis requested by the user, and displays the
result in a human-readable way.

7.2 CESK Benchmarks

A series of benchmarks have been performed on the implementation of the CESK machine
in order to check whether it behaves as expected with the refinements described in Sec-
tion 3.1.4. The results of those benchmarks are represented in Figures 7.1 and 7.2 (the
raw numbers are in Table 7.1), for k = 0. The results for other values of k do not differ
much and lead to the same conclusions.

Those graphs show respectively the size of the state graph and the time taken build this
state graph, for multiple examples with different refinements turned on or off: nothing

stands for the CESK machine without any refinement (except abstract counting, which is
always enabled), gc for the CESK machine with abstract garbage collection, sbfs for the
CESK machine with state subsumption when the exploration is done in a breadth-first
way, sdfs is similar but with the exploration done in a depth-first way, gc+sbfs and
gc+sdfs combine abstract garbage collection with state subsumption.

As expected, the combination of garbage collection and state subsumption generally
leads to a great improvement in the size of the state space and the processing time. This
is not the case for the few examples where there is no gain in the size of the state space,
and there is thus a loss in processing time.

Unlike the results of [ZR12], the state space reduction done by the state subsumption
mechanism alone seems to have more impact when exploring the state space in a breadth-
first way rather than in a depth-first way. When state space subsumption is combined
with garbage collection however, the exploration method used does not matter anymore.
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Figure 7.1: Number of states in the state graph computed by the CESK machine.

Figure 7.2: Time taken by the CESK machine to compute the state graph.

It seems to be reasonable to use both state subsumption and garbage collection by
default for the CESK machine, as the state space tends to generally be smaller for a good
improvement in processing time.
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example
nothing gc sbfs sdfs gc+sbfs gc+sdfs

# t # t # t # t # t # t
mut-rec.scm 145 0.166 56 0.065 99 0.677 93 0.647 56 0.128 56 0.132
infinite-2.scm 38 0.029 19 0.017 27 0.043 27 0.043 19 0.024 19 0.023
mj09.scm 902 2.340 72 0.088 115 1.234 233 5.849 72 0.196 72 0.194
count.scm 74 0.070 31 0.030 51 0.135 48 0.133 31 0.048 31 0.048
cpstak.scm 8598 30.490 518 1.227 180 4.106 364 23.825 52 0.134 52 0.133
letrec-begin.scm 16 0.011 16 0.011 16 0.017 16 0.015 16 0.016 16 0.018
loop2.scm 1815 5.493 387 0.819 289 12.639 627 68.965 136 0.813 136 0.811
kcfa2.scm 58523 336.684 145 0.173 72 0.377 1767 615.895 145 0.658 145 0.633
kcfa3.scm 273717 2087.824 247 0.372 89 0.730 2671 1831.256 247 1.944 247 1.928
rotate.scm — — 101 0.130 75 0.438 77 0.513 101 0.367 101 0.362
fact.scm 218 0.328 79 0.104 64 0.267 94 0.599 52 0.113 52 0.117
blur.scm 4457 19.973 191 0.325 259 8.642 1277 273.542 124 0.577 124 0.573
gcipd.scm 48665 240.061 190 0.321 396 18.265 730 70.235 130 0.606 130 0.607
widen.scm 217 0.307 85 0.120 69 0.296 85 0.515 55 0.131 55 0.136
inc.scm 52 0.054 28 0.023 24 0.041 26 0.049 28 0.036 28 0.036
infinite-1.scm 13 0.008 9 0.006 10 0.009 10 0.009 9 0.007 9 0.007
sq.scm 87 0.103 29 0.024 32 0.060 47 0.130 29 0.035 29 0.036
fib.scm 3261 10.494 673 1.632 112 0.891 182 2.833 98 0.351 98 0.356
church-2-num.scm 215 0.341 78 0.094 62 0.310 65 0.354 53 0.111 53 0.112
eta.scm 410 0.625 44 0.044 49 0.167 136 1.511 44 0.081 44 0.081

Table 7.1: Number of states in the state graph computed (#), and time taken to compute
it (t) by the CESK machine.

7.3 PCESK Benchmarks

Similarly as for the CESK machine, benchmarks have been performed on the PCESK
machine to inspect the influence of the refinements described in Section 4.4 on the produced
state space and the processing time. The results are given in Figures 7.3 and 7.4 (the raw
numbers are in Table 7.2) for k = 0. Similarly as for the CESK machine, the results for
other values of k lead to the same conclusions. Note that for the example deadlock.scm,
enabling state subsumption alone lead to an analysis that did not terminate in a reasonable
amount of time.

The nothing case corresponds to a PCESK machine with abstract counting (Sec-
tion 4.4.1), abstract thread counting (Section 4.4.2), and threads removed when they
finish their execution (Section 4.4.3).

example
nothing gc sbfs sdfs gc+sbfs gc+sdfs

# t # t # t # t # t # t
pcounter1.scm 305 1.110 123 0.421 102 0.792 184 3.856 81 0.425 101 0.597
pcounter.scm 8845 112.298 19047 342.835 2578 475.292 5753 2678.342 3703 795.219 5580 1612.348
pcounter5-seq.scm 1768 11.934 588 3.253 512 26.599 1060 113.555 378 6.844 478 10.647
pcounter-mutex.scm 2705 26.656 2497 28.747 1984 335.670 1860 406.975 1435 94.544 1441 99.699
pcounter-race.scm 457 3.347 669 5.191 457 11.323 457 11.175 457 9.543 457 10.581
pcounter-buggy.scm 8845 110.355 19047 293.326 2578 475.819 5753 2413.889 3703 773.126 5580 1622.439
producer-consumer-seq.scm 796 3.724 678 3.517 354 15.736 769 81.864 678 20.393 678 20.137
deadlock1.scm 1530 8.451 331 1.399 387 9.008 262 4.959 276 2.837 263 2.665
deadlock1-release.scm 3679 22.588 664 3.233 867 40.346 627 24.784 547 9.879 534 9.577
deadlock.scm 234962 4258.006 7413 104.741 — — — — 6049 1520.637 5911 1440.423
race-cas.scm 81 0.198 81 0.205 81 0.345 81 0.347 81 0.324 81 0.331
race-set-cas.scm 95 0.265 95 0.292 95 0.506 95 0.533 95 0.472 95 0.490
false-pos.scm 461 3.605 461 3.536 461 15.507 461 15.237 461 9.193 461 9.453
benign.scm 75 0.258 75 0.270 75 0.414 75 0.426 75 0.384 75 0.392

Table 7.2: Number of states in the state graph computed (#), and time taken to compute
it (t) by the PCESK machine.

First of all, we can see that abstract garbage collection sometimes has a negative impact
on the size of the state space for the PCESK machine, while for the CESK machine
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Figure 7.3: Number of states in the state graph computed by the PCESK machine.

Figure 7.4: Time taken by the PCESK machine to compute the state graph.

it always either reduced its size or kept it the same. It seems that garbage collection
sometimes prevent the possible merge of some states, who become different as garbage
collection reclaims some addresses in the stores. Due to the high size of the state spaces
involved, the reason for this higher size has not been further investigated.

We also see that, while it was a good idea to use both the garbage collection and the
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state subsumption (with either a DFS or a BFS) as default for the CESK machine, it is not
the case anymore for the PCESK machine. The gain in the size of the state space might
still be interesting in some cases (e.g. we go from 8887 states in pcounter.scm without
any refinement, to 3709 by using abstract garbage collection and and state subsumption
with a BFS), the price to pay in analysis time is high (in the same example, we go from
112s to 744s of analysis). In fact, the analysis time seems to generally be better when no
refinement is used, and for the few cases where the time decreases with the refinement,
this decrease is negligible (e.g. the pcounter5-seq.scm example goes from 11s to 3s when
garbage collection is used).

Unlike the CESK machine, it seems to be better not to use garbage collection nor
state subsumption on the PCESK machine. Should the analysis time be too high, garbage
collection might be turned on as it may lead to big improvements in some cases, such as
the deadlock examples in our benchmark.

7.4 Conclusion

In this chapter, we described our implementation of the PCESK machine and how it is
related with the mathematical definition of this machine (described in Chapter 4). This
fulfills the first objective of this thesis, which was to produce an implementation of the
PCESK machine, as no other publicly available implementation currently exist.

We performed benchmarks on the CESK machine implementation to verify that it
behaves as expected. Unsurprisingly, both the size of the state graph and the analysis
time is greatly reduced by using garbage collection and state subsumption. Also, when
combining state subsumption with garbage reduction, the exploration method (breadth-
first or depth-first) does not matter. However, when used without garbage reduction, we
found that state subsumption with a breadth-first exploration approach generally leads to
smaller state graphs, which is the opposite result of [ZR12].

We also performed benchmarks on the PCESK machine implementation. We observed
that it is no longer desirable to combine garbage collection and state subsumption by
default, as it leads to a non-negligible increase in processing time for only a small decrease
in the size of the state graph. A notable exception to this is the fact that examples
involving deadlocks tend to gain from the use of garbage collection, both in size of the
state graph and processing time.
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Chapter 8

First-Class Locks: The PCESKL
Machine

The ability to analyze programs using locks is important, because concurrent programs
tend to use locks as synchronization mechanisms instead of lower-level constructs such as
cas. In Chapter 6, we analyzed programs that use locks based on cas. Although using
cas as the sole concurrency primitive in CScheme keeps the language small and simple,
we found that the cost in terms of state space size and analysis time was high. As the
acquire function is implemented as a loop over a cas, many states are added to the state
graph. Eventually, with a few locks and a non-trivial use of cas-based locks, the state
graph becomes practically incomputable.

In this chapter, we investigate an alternative approach. We use locks as the concurrency
primitive instead of cas. We update the definition of the language, define the semantics of
the lock-related expressions, update the race condition and deadlock analyses, and finally
validate our approach. We conclude that using locks not only simplifies the analyses, but
also reduces the size of the state space and the analysis time, allowing to analyze more
complex programs that involve multiple locks.

8.1 The Language: CSchemeL

We update the language definition to use locks instead of cas. The updated language
is called CSchemeL (for Concurrent Scheme with Locks), and its grammar is given in
Figure 8.1.

Two primitive values are added, corresponding to the possible states of a lock: #locked
and #unlocked. We do not use booleans, as this might introduce imprecision because
booleans support other operations that might lose precision information.

Two expressions are added to act on locks: acquire and release, which both take a
lock as argument and either lock or unlock it.

Programs written with locks built on top of cas in CScheme are easily converted to
CSchemeL by initializing the locks to #unlocked instead of #t, and adapting the calls to
the previously user-defined functions acquire and release to take a lock as argument.

Example 26 (Parallel counter implemented with first-class locks). The program of
Example 9, when expressed in the CSchemeL language, becomes the following.
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(letrec ((counter 0)

(lock #unlocked)

(inc (lambda ()

(acquire lock)

(set! counter (+ counter 1))

(release lock)))

(t1 (spawn (inc)))

(t2 (spawn (inc))))

(join t1)

(join t2)

counter)

v ∈ Var a set of identifiers

n ∈ N a set of number literals

b ∈ B ::= #t | #f
l ∈ L ::= #locked | #unlocked

e ∈ Exp ::= æ | cexp

f,æ ∈ AExp ::= lam | v | n | b
lam ∈ Lam ::= (lambda (v1 . . . vn) e1 . . . en)

cexp ∈ CExp ::= (f e1 . . . en)

| (begin e1 . . . en)

| (letrec ((v1 e1) . . . ) ebody1 . . . ebodyn)

| (if econd econs ealt)

| (set! v e)

| (spawn e)

| (join æ)

| (acquire v)

| (release v)

Figure 8.1: Grammar of CSchemeL.

8.2 Semantics of the PCESKL Machine

The semantics of the CSchemeL (given by the PCESKL machine) are similar to those of
the CScheme language (given by the PCESK machine). spawn and join are handled in
exactly the same way in both machines. Similarly to cas in the the PCESK machine, the
semantics of the acquire and release concurrency primitives are handled at the level of
the underlying CESK machine. We only have to specify the sequential transition function
for acquire and release to obtain the PCESKL machine.

8.2.1 Concrete Semantics

The transition rule for acquire can only make progress when the value of the lock is
#unlocked. When this is the case, the value becomes #locked and the program can
continue its execution. When this is not the case, other transition rules should be used to
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step other threads until the lock becomes unlocked.

ς︷ ︸︸ ︷
〈(acquire v), ρ, σ, a, t〉 →〈#t, ρ, σ[ρ(v) 7→ #locked], a, u〉

if σ(ρ(v)) = #unlocked

where u = tick(ς)

The transition function for release ensures that the lock is correctly unlocked before
continuing the evaluation, but does not check whether the lock was previously locked or
not. The same lock can thus be released more than once.

ς︷ ︸︸ ︷
〈(release v), ρ, σ, a, t〉 →〈#t, ρ, σ[ρ(v) 7→ #unlocked], a, u〉

where u = tick(ς)

8.2.2 Abstract Semantics

Remember that in the abstract machine, there might be more than one concrete value
associated with an address in the store. In certain situations, we might not know whether
a lock is locked or not. This is the case if two different locks, one locked and one unlocked,
have been assigned to the same address.

One possible solution for this problem is to assume that there is only a finite number
of locks created in the programs. When this is the case, we can assign a different address
space for locks and ensure that every lock gets assigned a different address in this address
space. The precise value of a lock will then always be known.

Under this assumption, we can give the following abstract transition rule for acquire,
in which we can safely do a strong update on the value of the lock. This is because we
know that the lock is the only value residing at this address, and it has a finite number of
possible values.

ς̂︷ ︸︸ ︷
〈(acquire v), ρ̂, σ̂, â, t̂〉 →〈#t, ρ̂, σ̂[ρ̂(v) 7→ {#locked}], â, û〉

if σ̂(ρ̂(v)) u {#unlocked} 6= ⊥
where û = tick(ς̂)

The abstract transition rule for release is a straightforward translation of the concrete
one:

ς̂︷ ︸︸ ︷
〈(release v), ρ̂, σ̂, â, t̂〉 →〈#t, ρ̂, σ̂[ρ̂(v) 7→ {#unlocked}], â, û〉

where û = tick(ς̂).

This complete the definition of the PCESKL machine, which replaces the transition
rule of the PCESK machine for cas by the two transition rules for acquire and release.

8.3 Adaptation of the Analyses for PCESKL

The analyses defined in Chapter 5 were based on cas as the only concurrency primitive.
We have to adapt some of these analyses to use locks instead.

8.3.1 Conflict Analysis

Thanks to our formulation of the conflict analysis using the relations Read and Write, the
adaptation is trivial. Since the language does not have cas anymore, but just set! as a
write expression, the definition of the Write relation becomes the following:

Write(〈(set! v ), ρ̂, , 〉, ρ̂(v))
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This is the only change required to detect conflicts in the PCESKL machine. The
definitions of RWConflict , WWConflict and Conflict stay the same as before.

8.3.2 Race Condition Analysis

As the CSchemeL language does not include cas, no race condition can happen due to an
unretried cas. Therefore, the unretried cas detection is not needed anymore. The race
condition analysis reduces to the conflict analysis.

RaceCondition(e)⇔ Conflict(e)

8.3.3 Deadlock Analysis

Instead of having to inspect potentially long paths in the state graph to detect a deadlock,
deadlocks can now be found by looking at individual states and whether they have a
successor or not. Indeed, if there exists a reachable state where every context in this state
is currently evaluating either an acquire or a join, and if this state has no successor, we
reached a deadlock. This analysis is formalized by the relation DeadlockL ⊂ Exp:

DeadlockL(e)⇔(V,E) = ĝeval(e),∃〈T̂1, σ̂1〉 ∈ V ∧
@(〈T̂1, σ̂1〉, 〈T̂2, σ̂2〉) ∈ E ∧
∀ĉ ∈ range(T̂1),

(ĉ = 〈(acquire ), , , 〉 ∨ ĉ = 〈(join ), , , 〉).

The cas-based deadlock analysis was unable to detect deadlocks that involved a loss
of precision on the value of the variable written to by cas. Here, since there cannot be a
loss of precision on the value of locks, and locks are the only values that can be used to
do synchronization between threads (previously, any value could be used with cas), we do
not have this problem anymore. Every deadlock should be detected by this analysis.

Another problem of the cas-based deadlock analysis was that we did not check whether
multiple joins were actually blocked by a deadlocked thread (e.g. thread 1 is blocked and
thread 2 and 3 joins on thread 1) . If we had a cas that contained a cycle to itself, and that
all the other contexts in this state were joins, we considered this state to be a deadlock,
while it could be that the joins did not block each other. Here, it is not necessary to
check this, since we verify that the state of the deadlock does not have a successor. If
there are multiple joins but no deadlock, a successor state will exist and no deadlock will
be detected.

Because we have locks as first-class member of the language, deadlocks are easier to
find in the state graph since they actually represent a dead branch of the graph, while we
had to look for multiple states in our previous analysis.

8.4 PCESKL Benchmarks

Benchmarks have been done for the PCESKL machine on similar examples as for the
PCESK machine, rewritten with first-class locks. The results are given in Figures 8.4 and 8.5
(the raw numbers are in Table 8.1), for k = 0.

A striking difference with the PCESK machine is the gain of about an order of mag-
nitude in both the size of the state space and the analysis time. This can be seen on
Figures 8.2 and 8.3 which compare the size of the state space and the analysis time for
the PCESK and PCESKL machines on equivalent examples. The PCESK best bars cor-
respond to the best size and the best time for the PCESK machine, and are generally
not for an execution with the same improvements (an execution with abstract garbage
collection might produce a smaller state space but take more time to produce it). The
only example where the PCESK machine performs similarly as the PCESKL machine is
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Figure 8.2: Comparison between the number of states in the state graph computed by the
PCESK and the PCESKL machines.

Figure 8.3: Comparison between the time to compute the state graph for the PCESK and
the PCESKL machines.

the producer-consumer-seq.scm example. This can be explained by the fact that this
example contains two threads that run one after the other (hence the -seq) and thus does
not introduce many interleavings (just between one of the thread and the main thread).
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However, the pcounter5-seq.scm example also uses threads that run one after the other,
and the difference between the PCESK and PCESKL machines is higher. This difference
might be explained by the fact that this example uses 5 threads, which introduce more
interleavings with the main thread.

The deadlock.scm example has 7407 states with the PCESK machine, and took 104
seconds to analyze (with garbage collection enabled), while it only has 199 states, for less
than 1 second (0.918s) with the PCESKL machine. This is 37 times less states and 113
times less analysis time.

This improvement follows from the fact that the PCESKL machine is better suited
to detect deadlocks since it has first-class locks, but we also see the improvements for
programs not involving deadlocks, such as the pcounter.scm, which was implemented with
cas in the PCESK machine. With the PCESK machine, at its best (state subsumption,
BFS exploration) it had 2578 states and took 475 seconds to analyze. With the PCESKL

machine, it has 443 states and takes 2.48s to analyze. This is more than 5 times less states
and 191 times less analysis time.

Thanks to this improvement in performance, the PCESKL machine is able to analyze
more complex programs: the pcounter3.scm example is the parallel counter with three
threads, the deadlock3.scm example contains a deadlock involving three locks and three
threads and the incdec.scm example is Example 13 rewritten with locks. Those three
examples were not practically analyzable by the PCESK machine but are by the PCESKL

machine.

Figure 8.4: Number of states in the state graph computed by the PCESKL machine.

On Figures 8.4 and 8.5, we can see that both garbage collection and state subsumption
do not improve the size of the state space anymore, and tend to increase the analysis
time. It thus seems that for the PCESKL machine, a reasonable default is to turn off
those improvements, whereas they were still useful in some specific cases for the PCESK
machine.
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Figure 8.5: Time taken by the PCESKL machine to compute the state graph.

example
nothing gc sbfs sdfs gc+sbfs gc+sdfs
# t # t # t # t # t # t

pcounter1.scm 26 0.020 26 0.027 26 0.039 26 0.039 26 0.038 26 0.038
pcounter.scm 443 2.480 507 3.138 443 12.306 443 12.006 443 8.414 443 8.669
pcounter5-seq.scm 200 0.682 200 0.817 200 3.619 200 3.670 200 2.040 200 2.041
producer-consumer-seq.scm 710 2.937 662 3.346 710 59.347 710 58.382 662 18.666 662 18.440
join-lock3.scm 422 3.564 422 4.073 422 9.363 422 9.118 422 8.032 422 8.174
pcounter3.scm 3827 47.282 4827 64.053 3827 873.849 3827 899.201 3827 597.058 3827 602.982
deadlock1.scm 12 0.009 12 0.011 12 0.012 12 0.012 12 0.014 12 0.014
deadlock1-release.scm 19 0.019 19 0.021 19 0.026 19 0.026 19 0.027 19 0.027
deadlock.scm 199 0.918 199 1.017 199 2.461 199 2.450 199 1.955 199 1.927
deadlock3.scm 1793 21.404 1793 24.609 1793 197.430 1793 198.929 1793 111.376 1793 130.022
incdec.scm 3829 59.940 4349 68.612 3829 1043.559 3829 1053.622 3829 561.269 3829 648.868

Table 8.1: Number of states in the state graph computed (#), and time taken to compute
it (t) by the PCESKL machine.

8.5 Validation of the Adapted Analyses

We show in this section that the analyses we built on top of the PCESKL machine work
as expected. To use the PCESKL machine instead of the PCESK machine in the imple-
mentation, the flag -l is used.

8.5.1 Race Condition Analysis

The race condition analysis of the implementation is in fact exactly the same as for the
PCESK machine. It will detect conflicts involving set! and cas, and since no cas should
be present in the input program, it is the same as using the setconflict target (unretried
cas will also be looked at, but for the same reason, nothing will be found).

We can verify that the locks correctly guard the critical sections by using this analysis
on correct programs. For the examples containing race conditions due to set! conflicts,
since the analysis is the same as before, they are still detected. We run the analysis on
the following programs. The results are shown in Table 8.2.
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• pcounter.scm: Example 26, page 76, is the parallel counter example involving two
threads, written with first-class locks.

• pcounter3.scm: similar to pcounter.scm, but involving three threads.

• incdec.scm: similar to Example 13, page 47, involving three threads either increas-
ing or decreasing the value of a shared lock, rewritten to use first-class locks instead
of cas.

• pcounter-race.scm: Example 12, page 46, containing a race condition due to a
critical section reachable by multiple threads.

Example Length Threads Locks Expected
conflicts

found tp fp

pcounter.scm 32 2 1 0 0 0 0
pcounter3.scm 38 3 1 0 0 0 0
incdec.scm 52 3 1 0 0 0 0

pcounter-race.scm 24 2 0 2 2 2 0

Precision 100%
Recall 100%

Accuracy 100%

Table 8.2: Results of the race condition analysis on the PCESKL machine.

Because the conflict analysis remains mostly the same as in the PCESK machine,
it is expected that it still correctly detects errors such as in pcounter-race.scm, while
correctly detecting nothing in correct examples. The main difference with the cas-based
approach is that we are now able to analyze bigger programs, such as pcounter3.scm and
incdec.scm, whose CScheme equivalents were not analyzable in a reasonable amount of
time.

8.5.2 Deadlock Analysis

The target for the deadlock analysis of the PCESKL machine is the target ldeadlocks.
We run this analysis on the following examples. The results are given in Table 8.3.

• deadlock1.scm: Example 27, page 83, containing a deadlock involving one thread
and one (initially locked) lock.

• deadlock.scm: Example 28, page 84, containing a deadlock involving two threads
and two locks.

• deadlock3.scm: Example 29, page 84, containing a deadlock involving three threads
and three locks.

• pcounter.scm, pcounter3.scm, incdec.scm, examples from the previous section,
not containing any deadlocks.

Example 27 (Deadlock involving one lock and two threads). This program is similar as
the one in Example 23, as it has one deadlock created by two threads trying to acquire
the same lock.

(letrec ((lock #unlocked)

(t1 (spawn (acquire lock))))

(acquire lock)

(join t1))
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Example 28 (Deadlock involving two locks and two threads). This program is the
similar as the one in Example 24. Two threads try to acquire two locks in a different
order, creating a deadlock.

(letrec ((a #unlocked)

(b #unlocked)

(t1 (spawn (begin

(acquire a)

(acquire b)

(release b)

(release a))))

(t2 (spawn (begin

(acquire b)

(acquire a)

(release a)

(release b)))))

(join t1)

(join t2))

Example 29 (Deadlock involving three locks and three threads). This example contains
a possible deadlock as there is a possible dependency cycle between the locks. If thread
t1 acquires lock a, followed by thread t2 acquiring lock b, and thread t3 acquiring lock c

and then trying to acquire lock a, there will be a deadlock. Indeed, thread t1 is blocked
as it cannot acquire lock b (held by thread t2), thread t2 is blocked as lock c is held by
thread t3, thread t3 is blocked as lock a is held by thread t1, and the main thread is
blocked as it waits thread t1.

(letrec ((a #unlocked)

(b #unlocked)

(c #unlocked)

(t1 (spawn (begin

(acquire a)

(acquire b)

(release b)

(release a))))

(t2 (spawn (begin

(acquire b)

(acquire c)

(release c)

(release b))))

(t3 (spawn (begin

(acquire c)

(acquire a)

(release a)

(release c)))))

(join t1)

(join t2)

(join t3))

As expected, the deadlocks are detected, and no deadlock is detected on the examples
not containing any. Also, this analysis is able to detect deadlocks on programs larger than
those analyzable by the PCESK machine.
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Example Length Threads Locks Expected
ldeadlocks

found tp fp

deadlock1.scm 13 0 1 2 2 2 0
deadlock.scm 39 2 2 1 1 1 0
deadlock3.scm 58 3 3 1 1 1 0

deadlock1-release.scm 16 0 1 1 1 1 0
pcounter.scm 32 2 1 0 0 0 0
pcounter3.scm 38 3 1 0 0 0 0
incdec.scm 52 3 1 0 0 0 0

Precision 100%
Recall 100%

Accuracy 100%

Table 8.3: Results of the deadlock analysis on the PCESKL machine.

8.6 Conclusion

In this chapter, we addressed the precision problem of our cas-based deadlock analysis.
Values on which a cas was performed could become too abstract, either by living at the
same address as another value or as the result of a complex operation on the value. This
prevented the analyses to distinguish between a cas that will always fail from a correctly
used cas.

The PCESKL machine solves this problem by replacing cas with first-class locks,
managed by acquire and release. We defined the semantics of the PCESKL machine
and adapted both the race condition analysis and the deadlock analysis. The formulation
of the race condition analysis is simpler than in the cas-based approach, because the only
write operation is set!, and there is no need to filter out some conflicts that appear in
correct uses of cas. The deadlock analysis is also simpler, and does not have the precision
problem of the cas-based approach, so we do not need to throw away possible deadlocks.

Our benchmarks show that both the size of the state graph and the analysis time are
greatly reduced in the PCESKL machine, compared to the PCESK machine. This allows
us to analyze larger programs that were not analyzable in a reasonable amount of time
with the PCESK machine. Finally, we showed that both the race condition analysis and
the deadlock analysis compute the expected results.
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Chapter 9

Conclusion

In this dissertation, we explored the possibility of analyzing concurrency constructs in
higher-order programs. Being able to perform such analyses is important, as concurrent
programs tend to contain bugs that are particularly hard to find. We took the abstract
interpretation approach, basing our work on Might and Van Horn’s PCESK machine. We
described this machine along with some improvements. Next, we improved the original
May-Happen-in-Parallel analysis for the PCESK machine, so that it detected fewer false
positives. This MHP analysis served as the basis to build a conflict analysis, which was
able to detect read/write and write/write conflicts in higher-order programs. We then
presented an unretried cas analysis, as unretried cas may introduce race conditions in
programs. Together, the conflict analysis and the unretried cas analysis form a race
condition analysis. We also defined a deadlock analysis, which has some limitations due
to the inevitable loss of precision in the PCESK machine.

We conclude from our experiments that using cas as a synchronization primitive makes
the analyses complex, and that the running times of the analyses are high. Therefore, we
reviewed the language we analyze to use first-class locks instead of cas, which leads to
improvements in both the definition of the analyses and in the running time of the analyses.
The race condition analysis becomes simpler, as it only has to take set! into account as a
write operation. The lock-based deadlock analysis has fewer problems than the cas-based
variant, mainly because we avoid losing precision on lock values, which was not the case for
the general values on which cas acts. Having a shorter analysis time allows us to analyze
larger and more complex programs that were previously not practically analyzable by the
original PCESK machine.

9.1 Limitations of the Approach

The main limitation of the approach used in this work is the size of the state space
that grows with the size of the analyzed program and the number of threads. Using
abstract garbage collection and state subsumption on the CESK machine leads to good
improvements, but Chapter 7 shows that this is no longer the case on the PCESK machine.
Indeed, the potential decrease in state space size requires a non-negligible increase in
analysis time. This is even more true when we use first-class locks, as there is no longer
any decrease in state space by using abstract garbage collection and state subsumption
(Section 8.4).

In order to analyze programs that are longer than a few tens of lines of code, it becomes
indispensable to have a mechanism to reduce the total number of states. The same problem
arises with model-checking, and we could take inspiration from techniques used in model-
checking to reduce the size of the state space for concurrent programs, such as partial-order
reduction [GvLH+96]. In fact, our implementation supports a naive version of cartesian
partial-order reduction [GFYS07], but we chose not to discuss it in this work because it
often increases the number of false negatives of our analyses. Indeed, to reduce the size
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of the state space, it needs to drop information about the possible interleavings, making
analyses based on the May-Happen-in-Parallel analysis more unsound. More work can be
done to adapt these state space reduction techniques to abstract interpretation.

Two open question remain after our validation of the analyses on various examples.
First, enabling garbage collection can lead to an increase of the size of the state space in the
PCESK machine, as described in Section 7.3. This seems to be because two previously
equivalent states can become different if the garbage collector collects more garbage in
one state than the other. Further investigation is needed to find out why the garbage
collector does not reclaim the same addresses in two states that were previously equivalent.
The second question comes from the validation of the deadlock analysis on the PCESK
machine (Section 6.5). In the deadlock.scm example, two false positives are detected.
Due to the size of the state space, it is not feasible to investigate by hand to find the
reason of those false positives. We found no simpler example that still exhibits these false
positives. Knowing why these false positives occur could improve the precision of the
deadlock analysis.

9.2 Future Work

In this dissertation, we define analyses for race condition and deadlock detection, but con-
current programs might also contain livelocks. Because a program still executes different
expressions during a livelock, defining an analysis to detect them in the PCESK machine
would probably have similar limitations as the deadlock analysis. Since a cycle correspond-
ing to a livelock will contain branches with successful lock acquirements, it seems that a
program with a livelock will not be distinguishable from a program correctly acquiring a
lock.

Our deadlock analysis on the PCESKL machine makes the assumption that the pro-
gram we analyze contains a finite number of locks, in order to avoid dealing with the
possible loss of precision in the store addresses. A way to relax this assumption would
be to do a strong update on the lock value and creating two branches in the state graph
when accessing a lock whose value has been abstracted. Each branch would correspond to
the path taken by the program if the lock was either already locked, or not locked. If the
address space of lock values is separated from the other addresses, this approach should
correctly approximate the behavior of the program.

The n̂ewtid abstract thread allocation mechanism we used makes the assumption that
only a finite number of threads are spawned. Might and Van Horn [MVH11] describe other
approaches, but we did not include those in our implementation, as the increasing counter
allocation scheme did not cause any problems in our examples. More work could be done
to investigate whether this scheme is sufficient in the general case, or if other approaches
should be used.

While our deadlock analysis on the PCESK machine is less powerful than the one on
the PCESKL machine, it is still a useful analysis, even if there is room for improvement.
Improving it would require finding a solution to avoid loss of precision on addresses used
inside cas expressions in the program, and on the values stored in those addresses.

We demonstrated that changing the synchronization primitive from cas to locks both
simplifies the definition of the analyses, and improves their running time. Therefore, it
could be worth investigating other, higher-level synchronization primitives, such as moni-
tors. Also, adapting the PCESK machine to concurrency models different from the shared-
state thread view are worth investigating, for example to detect deadlocks in programs
using actor-based [HBS73] or CSP-based [Hoa85] paradigms.

Finally, while our race condition analysis works as expected on the examples we pre-
sented, we did not prove that the analysis is sound. It should be tested on more examples
to better understand its limitations, or be proven sound if it does not seem possible to
find an example that defeats it.

87



9.3 Summary

In this dissertation we show that it is possible to automatically detect race conditions and
deadlocks in higher-order programs through abstract interpretation. Other approaches are
described in related work (Sections 2.3 and 2.4), although none use abstract interpretation
to detect concurrency bugs. We based our work on Might and Van Horn’s PCESK machine,
which uses cas as the sole synchronization primitive. We show that it is possible to reason
about race conditions and deadlocks on this machine, but that there is a precision cost
forcing the analyses to be unsound to avoid detecting too many false positives. We describe
a solution to this problem by introducing PCESKL machine, which uses locks as the only
concurrency primitive. This machine not only makes the concurrency analyses more simple
to formalize, it also produces more precise results in less time than was the case with the
PCESK machine. The PCESKL machine also represents a step forward in the complexity
of programs our analyses can handle.
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[FS07] Lars-Åke Fredlund and Hans Svensson. Mcerlang: a model checker for a
distributed functional programming language. In ACM SIGPLAN Notices,
volume 42, pages 125–136. ACM, 2007.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F Duba, and Matthias Felleisen. The
essence of compiling with continuations. In ACM Sigplan Notices, volume 28,
pages 237–247. ACM, 1993.

[GFYS07] Guy Gueta, Cormac Flanagan, Eran Yahav, and Mooly Sagiv. Cartesian
partial-order reduction. Model Checking Software, page 95, 2007.

[GvLH+96] Patrice Godefroid, J van Leeuwen, J Hartmanis, G Goos, and Pierre Wolper.
Partial-order methods for the verification of concurrent systems: an approach
to the state-explosion problem, volume 1032. Springer Heidelberg, 1996.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. In Proceedings of the 3rd international
joint conference on Artificial intelligence, pages 235–245. Morgan Kaufmann
Publishers Inc., 1973.

[HD01] John Hatcliff and Matthew Dwyer. Using the bandera tool set to model-check
properties of concurrent java software. In CONCUR 2001—Concurrency The-
ory, pages 39–58. Springer, 2001.

[Hoa85] Charles Antony Richard Hoare. Communicating sequential processes, volume
178. Prentice-hall Englewood Cliffs, 1985.

[Hol04] Gerard J Holzmann. The SPIN model checker: Primer and reference manual,
volume 1003. Addison-Wesley Reading, 2004.

[HP04a] David Hovemeyer and William Pugh. Finding bugs is easy. ACM Sigplan
Notices, 39(12):92–106, 2004.

[HP04b] David Hovemeyer and William Pugh. Finding concurrency bugs in java. In
Proc. of PODC, volume 4, 2004.

[Jag95] Suresh Jagannathan. Locality abstractions for parallel and distributed com-
puting. In Theory and Practice of Parallel Programming, pages 320–345.
Springer, 1995.

[JW94] Suresh Jagannathan and Stephen Weeks. Analyzing stores and references in
a parallel symbolic language. In ACM SIGPLAN Lisp Pointers, volume 7,
pages 294–305. ACM, 1994.

[Mig10] Matthew Might. Tutorial: Small-step cfa. 2010.

[Mig11] Matthew Might. Abstract interpreters for free. In Static Analysis, pages
407–421. Springer, 2011.

90



[MS06] Matthew Might and Olin Shivers. Improving flow analyses via γcfa: abstract
garbage collection and counting. ACM SIGPLAN Notices, 41(9):13–25, 2006.

[MVH11] Matthew Might and David Van Horn. A family of abstract interpretations for
static analysis of concurrent higher-order programs. In Static Analysis, pages
180–197. Springer, 2011.

[NA07] Mayur Naik and Alex Aiken. Conditional must not aliasing for static race
detection. ACM SIGPLAN Notices, 42(1):327–338, 2007.

[NAW06] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for
Java, volume 41. ACM, 2006.

[NPSG09] Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. Effective static
deadlock detection. In Proceedings of the 31st International Conference on
Software Engineering, pages 386–396. IEEE Computer Society, 2009.

[Ric53] Henry Gordon Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, 74(2):358–366,
1953.

[Shi91] Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis,
Carnegie Mellon University, 1991.

[Sut05] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency
in software. Dr. Dobb’s Journal, 30(3):202–210, 2005.

[Tur08] Franklyn Turbak. Design concepts in programming languages. MIT press,
2008.

[Ur08] Shmuel Ur. Testing and debugging concurrent software. 2008.

[VHM10] David Van Horn and Matthew Might. Abstracting abstract machines. In
ACM Sigplan Notices, volume 45, pages 51–62. ACM, 2010.

[vP04] Christoph von Praun. Detecting synchronization defects in multi-threaded
object-oriented programs. PhD thesis, Swiss Federal Institute of Technology,
Zurich, 2004.

[WJP94] Stephen Weeks, Suresh Jagannathan, and James Philbin. A concurrent ab-
stract interpreter. Lisp and Symbolic Computation, 7(2-3):173–193, 1994.

[WTE05] Amy Williams, William Thies, and Michael D Ernst. Static deadlock detection
for java libraries. In ECOOP 2005-Object-Oriented Programming, pages 602–
629. Springer, 2005.

[ZR12] Eduardo Zambon and Arend Rensink. Graph subsumption in abstract state
space exploration. In GRAPHITE, pages 35–49, 2012.

91


	Introduction
	Background
	Objectives and Contributions
	Overview of the Approach
	Notation

	State of the Art
	Static Analysis
	Abstract Interpretation
	Existing Analysis Tools
	Static Analysis of Concurrent Programs
	Conclusion

	Background Material
	The CESK Machine
	Administrative Normal Form
	Conclusion

	A Concurrent Scheme and its PCESK-based Semantics
	The Language: CScheme
	Concrete Semantics: The PCESK Machine
	Abstract Semantics: The Abstract PCESK Machine
	Refinements of the PCESK Machine
	Output of the PCESK Machine
	Conclusion

	Applications of the PCESK Machine
	May-Happen-in-Parallel Analysis
	Read/Write and Write/Write Conflicts Detection
	Unretried cas Detection
	Race Condition Detection
	Deadlock Detection
	Conclusion

	Validation of the Analyses
	May-Happen-in-Parallel Analysis
	Conflicts Detection
	Unretried cas Detection
	Race Condition Detection
	Deadlock Detection
	Conclusion

	Implementation and Benchmarks
	Implementation of the CESK and PCESK Machines
	CESK Benchmarks
	PCESK Benchmarks
	Conclusion

	First-Class Locks: The PCESK_L Machine
	The Language: CScheme_L
	Semantics of the PCESK_L Machine
	Adaptation of the Analyses for PCESK_L
	PCESK_L Benchmarks
	Validation of the Adapted Analyses
	Conclusion

	Conclusion
	Limitations of the Approach
	Future Work
	Summary


