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Abstract

The WebAssembly standard aims to form a portable compilation target,
enabling the cross-platform distribution of programs written in a variety of
languages. This paper introduces and evaluates novel slicing approaches for
WebAssembly, including dynamic and hybrid approaches. Given a program
and a location in that program, a program slice is a reduced program that
preserves the behavior at the given location. A static slice does so for all
possible inputs, while a dynamic slice does so for a fixed set of inputs. Hybrid
slicing is a combination of static and dynamic slicing.

We build on Observational-Based Slicing (ORBS), where we explore the
design space for instantiating ORBS for WebAssembly. For example, ORBS
can be applied to the whole program or to only the function containing the
slicing criterion, and it can be applied before compilation to WebAssembly
or afterward. We evaluate the slices produced using various options quanti-
tatively and qualitatively. Our evaluation reveals that dynamic slicing at the
level of a function from a WebAssembly binary finds a sweet spot in terms of
slice time and slice size, and that a combination of static and dynamic slicers
achieves the best trade-off in terms of slicing time and slice size.

1. Introduction

WebAssembly is a recent binary format [1] with many diverse use cases [2]
both on the Web and beyond, including desktop applications [3] and smart
contracts [4]. The academic literature has focused on the security aspects
of WebAssembly [5, 6, 7, 8, 9, 10, 11, 12] and on tools and techniques for



analyzing WebAssembly binaries [13, 14, 15, 16, 11, 17, 18]. The rise in its use
brings a growing need for tools to support the development and maintenance
of WebAssembly code.

Program slicing [19, 20] provides a basis for such tools. Given a program
point called the slicing criterion, program slicing identifies a reduced pro-
gram that captures the computation at the slicing criterion. Program slicing
has numerous applications such as debugging [21, 22, 23], program compre-
hension [24, 25, 26, 27, 28], software maintenance [29, 30], re-engineering [31],
refactoring [32], testing [33, 34, 35], reverse engineering [36, 37], tierless or
multi-tier programming [38, 39], and vulnerability detection [40].

Program slicers exist along multiple dimensions [41] including static vs.
dynamic, executable vs. closure, and backward vs. forward. Prior to our
work, the only existing slicer for WebAssembly was a static backward closure
slicer, which we refer to as CSE [42].

This paper extends our initial investigation [43] of the first dynamic slicers
for WebAssembly. Such slicers might be applied, for example, to a bug re-
port consisting of hundreds of WebAssembly instructions that cause the web
browser’s WebAssembly virtual machine to crash. Alternatively, reducing
this code to tens of instructions is a clear win. Another example application
is escape analysis aimed at security flaws: a web browser might run this
analysis in the background against each WebAssembly binary.

The design space for dynamic slicers that can slice WebAssembly is vast
and until our work has gone unexplored. We consider options involving three
key slicing phases: compiling the program to WebAssembly (C), extracting
the function containing the slicing criterion (E), and slicing out (removing)
irrelevant code (S). For example, given a program P , one possible arrange-
ment is first apply S (slice P at the source level), then C (compile the reduced
program to WebAssembly), and finally E (extract the function that contains
the slicing criterion). We denote this arrangement SCE for short.

As a second example, CES first compiles the source to WebAssembly, then
extracts the function containing the slicing criterion, and finally slices out
irrelevant code from this function. Comparing these two, we expect slicing
after compilation to be more surgical, for example, able to remove boilerplate
code that compilers include at the start and end of each function. Compared
with the option CSE , we expect slicing before extraction to be slower because
more code is considered but more precise because it can remove code from
called and calling functions.

Building on our preliminary investigation [43], which investigated three
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dynamic slicers, this paper exhaustively explores the design space of applying
the dynamic slicer ORBS [44] to WebAssembly, and provides insights into
the advantages and limitations of four dynamic WebAssembly slicers as well
as one hybrid slicer, by empirically comparing them with each other and
with CSE using 57 C programs and a total of 1643 slicing criteria. The paper
extends our preliminary investigation [43] in the following ways:

• We extend our investigation of the design space by exploring all pos-
sible combinations of slice, extract, and compile. This suggests four
promising dynamic slicers for WebAssembly. Our earlier work investi-
gated only three of these. We replicate that work here using a slicing
configuration that is more appropriate to the slicing of WebAssembly
(see RQ5).

• Our earlier work identified that static slicing is far faster but the slices
reflect significant static over-approximation. In contrast, dynamic slic-
ing provides smaller slices but takes considerably longer. This led us
to consider a novel hybrid slicer that first applies the static slicer to
quickly remove much of the unnecessary code and then applies the
dynamic slicer.

• We quantitatively and qualitatively compare the slices produced by
the four dynamic slicers and by one hybrid slicer uncovering several
interesting patterns and suggesting directions for future improvement.

• We compare the dynamic and hybrid approaches to the static Web-
Assembly slicer CSE to both study the relative cost of each slicing
approach and because we hope that the dynamic slicers will suggest
improvements to the static slicer.

• We investigate the ideal window size for slicing WebAssembly code.
In our earlier work we relied upon prior work with high-level lan-
guages [45, 44] and used a deletion window size of four. Qualitative
analysis of the resulting slices clearly indicates that there were spe-
cific WebAssembly patterns that would benefit from a larger deletion
window size. We therefore hypothesize and demonstrate that a larger
window size is more appropriate when slicing at the lower-level granu-
larity of WebAssembly code.
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• We expand our evaluation to include a larger application, namely SQLite.
This program has 169 448 SLoC (non-blank, non-comment lines of
code), which when compiled to WebAssembly produces 287 346 in-
structions. We slice this program according to 6 criteria, and detail
the results of our experiment in RQ8.

Our dataset and empirical evaluation scripts are available in a replication
package1.

2. Background

This section provides background on WebAssembly and CSE , the only
known static slicer for WebAssembly. We also briefly describe ORBS, a
language-agnostic dynamic slicing approach that we instantiate to produce
our four dynamic and one hybrid slicing algorithms for WebAssembly.

2.1. A Brief Tour of WebAssembly
This tour of WebAssembly is adapted from our previous work with CSE [42].

WebAssembly programs are bundled as modules, which contain one or more
function declarations, along with other elements that are less relevant for the
present paper (type declarations, data segments, tables, ...) WebAssembly
modules manipulate primitive types that can be 32-bit or 64-bit integers and
floating point numbers (i32, i64, f32, f64). Functions are typed: they
take zero, one, or more parameters of one of the primitive types, and return
zero, one, or more values also of the primitive types. Functions declare the
types of their local variables. Parameters and local variables can be accessed
through an index. For example, a function with one formal parameter and
two local variables accesses the formal parameter at index 0 and the local
variables at indices 1 and 2. The remainder of a function definition is the
sequence of instructions that form the function’s body.

Broadly speaking, there are two kinds of instructions. Control instruc-
tions (e.g., block, loop, if, and call) structure the program’s control flow,
while data instructions manipulate the stack (drop, i32.const), locals
(local.get and local.set), and globals (global.get and global.set).
Blocks act as delimiters inside functions for identifying jump targets. Loops
are blocks whose semantics capture the iterative behavior.

1https://zenodo.org/records/14851417
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1 int main() {
2 int i = 0;
3 int x = 0;
4 int c = 0;
5 while (p(i)) {
6 if (q(c)) {
7 x = f();
8 c = g();
9 }

10 i = h(i);
11 }
12 }

Figure 1: The SCAM Mug program in C. All called functions are side-effects free.

2.1.1. The SCAM Mug in WebAssembly
To illustrate programming in WebAssembly, we consider the “SCAM

Mug” [46] C program, which is heavily used in the slicing literature. The
program, which featured on the souvenir mug given to attendees at the first
SCAM workshop, shown in Figure 1, is designed to challenge static analy-
sis tools, especially those making use of transitive dependence analysis. For
example, the minimal slice at the end of the code taken with respect to the
variable x does not include Line 8 despite the transitive dependence.

The equivalent function in WebAssembly is given in Figure 2, where, for
convenience, we annotate function calls with the type of the target function.

On Line 2, the function declares the equivalent of local variables i (with
index 0), x (index 1), and c (index 2). All local variables are initialized to zero
in WebAssembly. These first two lines and those containing end are non-
executable lines. All remaining lines represent WebAssembly instructions.
Line 3 retrieves and pushes the value of the first local variable on the stack.
The next line calls function p, which expects its single argument to be on the
top of the stack (in this case local 0). The if-instruction on Line 5 checks
whether the top of the stack (the function’s return value) is true (differs from
0) and if so executes its then branch, which captures the body of the loop.
An optional else branch is unnecessary here. This instruction should not be
confused with br_if n, which breaks n nested blocks if the value on the
top of the stack is true. The loop instruction on Line 6 denotes the start
of a loop. When execution encounters a break, it re-executes the loop from
the start. In WebAssembly, the “breaking” of a loop behaves like a continue
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1 (func (type 0) ;; int main()
2 (local i32 i32 i32) ;; declare i, x, c
3 local.get 0 ;; push local i
4 call i32→i32 $p ;; p(i)
5 if
6 loop
7 local.get 2 ;; push local c
8 call i32→i32 $q ;; q(c)
9 if

10 call→i32 $f ;; f()
11 local.set 1 ;; x = result of f()
12 call→i32 $g ;; g()
13 local.set 2 ;; c = result of g()
14 end
15 local.get 0
16 call i32→i32 $h ;; h(i)
17 local.set 0 ;; i = result of h(i)
18 local.get 0
19 call i32→i32 $p ;; p(i)
20 br_if 0 ;; loop if stack top
21 end ;; is true
22 end)

Figure 2: The SCAM Mug in WebAssembly.
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statement in C. In the example, br_if 0 starts the next iteration if the
value on the top of the stack is true. The “0” signifies which loop, in this
case, the immediately enclosing loop (Line 6). If no breaks are encountered,
execution continues with the instruction that follows the loop’s matching
end keyword. Thus Lines 5, 6, and 20 combine to implement the while
loop of the C program.

The body of the loop first calls the function q with local variable 2 (c) on
Line 8. If the result of this call is non-zero, it calls function f and assigns the
result to local variable 1 (x) on Line 11, and does the same with function g
and local variable 2 (c). Finally, near the end of the loop body on Line 17,
local variable 0 (i) is assigned the result of calling h(i). The loop ends with
the br_if instruction on Line 20 which checks the loop condition (the value
on the top of the stack) and jumps back to the beginning of the loop if the
value is non-zero.

2.1.2. WebAssembly Validation Requirement
WebAssembly programs have to be well formed according to Section 3 of

the WebAssembly standard [47]. This includes a stack validation requirement
that is checked by the host environment when compiling and before executing
a program. In brief, each instruction has a specific stack type t∗1 → t∗2, where
t∗1 is the expected sequence of types for the values on top of the stack before
the execution of the instruction and t∗2 is the sequence of types for the values
on top of the stack after its execution. For example, the i32.const 0
instruction has type “ → i32”, meaning that it does not need anything from
the stack and pushes one value of type i32. Typing extends to sequences
of instructions. For example, the sequence local.get 0; local.get 1;
i32.const 1; i32.add has type “ → i32 i32”.

Validation poses a challenge to program slicing in that the body of a
function has to be well formed [42]. Thus only deletions that leave the
code well typed are permitted, which can prevent the removal of otherwise
superfluous code. For example, in the following WebAssembly fragment,
both branches of the if push one value on the stack and therefore have the
same type “ → i32”. Removing the code of the else branch (Line 5) because
it never gets executed (as the condition of the if is always true) would result
in a WebAssembly program that fails the validation requirement.
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1 i32.const 1
2 if
3 local.get 0
4 else
5 local.get 1
6 end

2.2. Static Slicing of WebAssembly
The static WebAssembly slicer CSE [42] has three phases:

1. First, a data-gathering phase computes the dependences of each in-
struction in a function. It computes the layout of the stack after each
instruction using a stack specification analysis [14], identifies data de-
pendences through use-definition chains, identifies control dependences
using Ferrante’s exact algorithm [48], and performs a WebAssembly-
specific over-approximation for memory-specific data dependences [42].

2. Second, the slicing phase identifies the WebAssembly instructions of the
closure slice relying on the dependences identified in the first phase, tak-
ing inspiration from traditional approaches to slicing [21], and adding
instructions for structured control flow [49].

3. Third, a reconstruction phase includes additional instructions to ensure
that the slice satisfies the validation requirement and is thus a valid
WebAssembly program.

Given a module and an instruction as the slicing criterion, CSE produces a
reduced module where the function containing the slicing criterion has been
replaced by a smaller function that preserves the semantics of the slicing
criterion.

2.3. Observation-Based Slicing
Observation-Based Slicing (ORBS) [44] is a language-agnostic slicing ap-

proach that can in theory be applied to WebAssembly. As originally in-
troduced, it takes as input a source program P to slice, a slicing criterion
identified by a program variable ν, a program location l, a set of inputs I,
and a maximum deletion window size δ. The slice computed by ORBS com-
piles and preserves the semantics of ν at l for the set of inputs I. ORBS is
language agnostic so it considers a program a sequence of lines of text.

Freed from the need to perform complex whole-program dependence anal-
ysis, Yoo et al. observed that ORBS need only focus on a subset of a program;
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thus they extended ORBS’ slicing criteria to include components of interest,
CoI [50]. In brief, the slicer’s deletion attempts are restricted to the CoI.
This enables, for example, slicing programs that contain binary components
such as third-party libraries, which can be excluded from the CoI and thus
need not be changed by the slicer. With this addition, an ORBS slice is
taken with respect to the criteria (v, l, I,CoI) and preserves the state trajec-
tory for v at l for the selected inputs in I, while deleting only code from the
components of CoI but no other components.

Operationally, ORBS first instruments the program by inserting a side-
effect free line that tracks the value of variable ν immediately before line l.
This insertion enables the algorithm to detect changes to the value of the
variable at the slicing location. The instrumented program is then run on
each input in I and the tracked values are used as an oracle for the expected
output.

The rest of the algorithm iterates over the CoI tentatively removing lines
until no more lines can be deleted. Each iteration over the CoI attempts to
remove up to δ consecutive lines starting with the current line. After each
removal, the program is compiled, and if it compiles, it is executed and the
output is compared with the oracle. If this output matches the oracle then
the current removal is made permanent. When a fixed point is reached the
result is the dynamic observation-based slice. This paper considers two CoI’s,
the file that contains the slicing criterion and the function that contains the
slicing criterion.

Finally, by its very nature, Observation-Based Slicing is not quick. Ap-
plying it to a low-level assembly representation might prove prohibitively
expensive. Thus, we consider practicality at two levels: first, is slicing fast
enough for real-time use within an IDE and second, is it sufficiently fast for
infrequent use, which we characterize as the time it takes to get a cup of
coffee. One use case for this second level is the example from the introduc-
tion, involving the simplification of a bug report that includes hundreds of
instructions. Reducing this code to tens of instructions in the time it takes
to get a cup of coffee is sufficient.

3. Study Design and Methodology

This section describes our study’s design and methodology, starting with
the slicers studied and then the research questions considered. The section
then describes the subject programs studied, their preparation, and the two
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metrics used to evaluate slicer performance. Finally, it provides some imple-
mentation details.

3.1. The Slicers Studied
The experiments consider several dynamic slicers, which are compared

against each other and the only previously existing static slicer, CSE [42]. In
addition, we consider a static/dynamic hybrid suggested by the initial ex-
periments. The design space for instantiating a dynamic observation-based
slicer for WebAssembly is formed from combinations of three key tasks: slic-
ing the code (S), compiling the code to WebAssembly (C), and extracting the
function containing the slicing criterion (E). The extracted function becomes
the slice’s CoI (Component of Interest). The order in which these tasks are
performed, including replications, forms the design space. For example, CES
first compiles the code to WebAssembly, then extracts the function containing
the slicing criterion, and finally applies ORBS using the extracted function
as the CoI.

To explore the design space we first consider the slicers obtained using
a single application of each of S, E , and C. We then consider all possible
sequences, including repetitions. The six possible single-application orders,
produce three viable slicers (primarily because the order of compile and ex-
tract does not influence the resulting slice):

• SCE– slice the C code using the C file as the CoI, compile the sliced
C code using clang, then extract the function containing the slicing
criterion.

• CSE– run clang, slice the entire resulting assembly file as the CoI, then
extract the function that contains the slicing criterion.

• CES– run clang, extract the function that contains the slicing criterion,
then slice only that function as the CoI.

An exhaustive exploration of the design space requires considering all
possible combinations of Slicing, Extracting, and Compiling. Fortunately,
many sequences are equivalent. For example, slicing twice in succession is
the same as Slicing a single time. The same is true for Extracting. Likewise
Extracting before Compiling brings no real value and finally, we need only
Compile once in any given slicer.
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To further simplify the design space, we rely on our findings compar-
ing CSE and CES where it is preferable to slice after extraction [43]. This
preference is motivated in part by the amount of code that must be con-
sidered when slicing the entire file and by cases in which a whole-file slice
removes the boundary between two functions making the resulting slice hard
to comprehend.

While a bit tedious, using these equivalences and the preference of CES
over CSE , the set of all possible combinations boils down to six: SCE , CSE ,
and CES from our original experiments [43], plus SCES, ESC, and ESCS. It
is encouraging that our initial three choices are all retained. As for the other
three, SCES slices at both the source and WebAssembly levels of abstraction,
ESC slices only the C function that contains the criteria (in contrast to SCE ,
which slices the entire C file), while ESCS slices only the C function that
contains the criteria but at both levels.

Because slicing only a C function is a bit far removed from our goal of
studying the slicing of WebAssembly binaries, we do not consider ESC nor
ESCS. Slicing a C function rather than the entire C file, as done with SCE ,
should be faster but the resulting slices should be largely unchanged. Thus
in addition to the initial three, we consider here the only multi-application
combination slicer studied.

• SCES– slice the C code using the C file as the CoI, compile the sliced C
code using clang, extract the function containing the slicing criterion,
and then slice only that function as the second slice’s CoI.

Finally, we formalize the static slicer and a novel hybrid slicer that was
suggested during the initial experiments.

• CSE– run clang, then run the static WebAssembly slicer [42] on the
resulting file as the CoI, and finally extract the function that contains
the slicing criterion.

• CSES– same as CSE except that we apply ORBS to the static slice using
only the function that contains the slicing criteria as the CoI.

It is worth noting that because they slice after the code has been compiled,
the slicers CES, CSE , CSE , and CSES have the advantage that they do not
require access to the source code being sliced and thus can slice deployed
binaries.
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All of the slicers considered in the paper are inter-procedural slicers in the
sense that each takes into account the calling context of the code external to
the function that contains the slicing criteria. In contrast, an intra-procedural
slicer ignores the context of the code and only accounts for dependences found
in the code of the function being sliced. When computing an inter-procedural
slice it is possible to focus ORBS on a given CoI (e.g., a function, class, file,
etc.), but the resulting slice takes into account all of the inter-procedural
dependences.

3.2. Research Questions
We evaluate our slicers using the following eight research questions.
RQ1: How practical is applying ORBS directly to WebAssembly programs?

ORBS involves repetitive execution of the program being sliced. Applying it
to a low-level representation such as WebAssembly might prove prohibitively
expensive. This research question investigates the time taken to slice the
original C code (SCE), the entire WebAssembly file (CSE), and finally only
the WebAssembly function that contains the slicing criterion (CES).

RQ2: Which of the single-application dynamic slicers SCE , CSE , and
CES best balances speed and precision? Because the source provides a higher-
level representation of the code, we expect SCE to be the fastest of the three.
However, it is unclear whether the precision will suffer because SCE is slicing
at a higher level of abstraction. At the other end of the spectrum, CSE is
expected to be the most precise, but also the slowest. The big question is
whether CES represents a sweet spot.

RQ3: What qualitative differences exist between the slices produced by
the three single-application dynamic slicers? One expected difference is that
slicing the code after compilation will enable the slicer to remove boilerplate
code that most compilers include at function entry and exit. Slicing at the
source level cannot remove this code. At the other end of the spectrum when
slicing the compiled code where the CoI is the entire file, slicing should be
able to remove code that cannot be removed when the CoI is a single function
because the code is required by an unnecessary computation found in another
function.

RQ4: What are the pros and cons of static slicing versus dynamic slicing?
We expect the static slicer to be notably faster but lacking in two ways. First,
it is forced to make conservative data-flow assumptions and second, unlike
ORBS, it does not guarantee that its slices are executable.
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RQ5: What is the ideal window size, δ, when applying ORBS to Web-
Assembly? Earlier work found that δ = 4 best balances slice size and slicing
time when slicing C and Java code [44, 51, 52]. Prior work slicing Web-
Assembly [43] identified cases where additional deletion would be possible
using a window size larger than 4. Thus, δ = 4 may not be the best choice
when slicing low-level code such as WebAssembly. This seems reasonable be-
cause assembly language includes less semantic information per line. Coun-
terbalancing the benefits of a larger window size is the increased slicing time
a larger window size brings.

RQ6: What is the impact of slicing at multiple levels of abstraction? In
an attempt to capture the best of both worlds, our novel slicer, SCES, applies
ORBS to the C code and then to the WebAssembly code. We expect this to
combine the benefits of SCE and CES, resulting in smaller slices computed
in less time.

RQ7: What is the impact of a static/dynamic hybrid slicer? This research
question considers the impact of first applying the static slicer CSE to quickly
remove statically irrelevant code and then apply the dynamic slicer CES
to remove dynamically irrelevant code. Ideally, the result, CSES, should
produce the same slice as CES in a fraction of the time. Such static/dynamic
hybrids have proven successful in the past at other levels of abstraction [45].

RQ8: How do the slicers behave on real-world applications? This research
question evaluates whether our findings generalize beyond the benchmarks
used in the other research questions. We apply the slicers to a real-world
application of 170kSLoC based on SQLite, with six different slicing criteria
within functions of varying sizes. We expect the outcome of this experiment
to reinforce the conclusions from our first seven research questions, thus
improving the external validity of our results. This research question also
helps us evaluate the scalability of our approach.

3.3. Subjects
We consider 57 C programs as the subjects of our study. These sub-

jects are listed in Table 1 along with their respective sizes. Code sizes are
given in source lines of code (SLoC), which excludes blank and comment
lines. The subjects considered include classical programs from the slicing
literature [19, 46, 53, 29], programs from the Mälardalen WCET research
group [54], programs from the Benchmarks Game [55], and the multi-file sys-
tem bc. These subjects have all been used in previous slicing studies [56, 42].
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Table 1: Subjects used in our evaluation. Source lines of code (SLoC), computed us-
ing sloc_count_c, include only non-comment, non-blank lines of code. We report the
mean SLoC across all sliced versions of each program because the instrumentation used
to perform slicing adds one or two lines depending on the slicing criterion.

C WASM C WASM
Program SLoC SLoC Program SLoC SLoC

adpcm 585 10 275 lms 172 8 759
bc__bc 8007 40 499 ludcmp 109 9 022
binary-trees1 91 14 663 mandelbrot9 66 14 764
bs 46 8 130 matmult 54 8 328
bsort100 61 8 221 mbe 63 15 622
cnt 76 8 511 minver 201 9 074
compress 357 9 000 nbody1 92 14 756
cover 625 8 847 nbody2 107 14 819
crc 94 8 409 nbody3 90 14 757
duff 44 8 296 nbody6 93 14 754
edn 170 9 027 nbody7 137 15 005
expint 73 8 268 ndes 196 9 009
fac 23 8 199 ns 30 8 387
fankuchredux1 79 14 843 nsichneu 2989 17 277
fankuchredux5 115 15 047 prime 51 8 176
fasta1 126 21 028 qsort-exam 124 8 407
fasta2 264 15 236 qurt 120 8 285
fasta3 90 14 586 reverse-complement5 83 14 917
fasta5 109 14 797 reverse-complement6 96 14 770
fasta8 150 14 903 scam 63 15 633
fasta9 161 15 007 select 131 8 307
fdct 138 8 531 spectral-norm1 57 14 725
fft1 128 11 004 st 98 8 337
fibcall 27 8 135 statemate 1354 10 613
fir 54 8 277 sumprod 18 14 355
insertsort 33 8 141 ud 81 8 933
janne_complex 38 8 131 wc 49 20 615
jfdctint 119 8 506 fasta7 231 15 041
lcdnum 62 8 227
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We limit the complexity of the programs considered to facilitate com-
parison. This does not mean that our approach cannot handle larger codes,
only that such complexity makes patterns harder to identify. As an exam-
ple, we consider one multi-file program, bc. Including this program allows
us to illustrate that larger programs do not have any material effect on the
analysis.

3.4. Subject Preparation
ORBS captures the slicing criterion by annotating the program with a

statement that prints the variable of interest. The static slicer also uses
this print statement to identify the slicing criterion. For each program, we
annotate the use of each scalar variable in the program. In addition, for
the classical slicing examples, we consider slices with respect to pointers
such as argv, which is possible because we instrument these programs by
hand. This process yields 1646 slicing criteria. We subsequently removed
three criteria whose slices exhibited non-deterministic behavior, leaving 1643
slicing criteria.

When considering RQ4 and RQ7, we further cull 98 slices whose static
slice fails to preserve the behavior of the slicing criteria. The static slicer
produces closure slices, which are not guaranteed to preserve the original
execution behavior. When a static closure slice preserves all of the original
program’s behavior for the slicing criteria then it is also a static executable
slice. We use a lower bar. In our experiments, it is sufficient for the static slice
to preserve the behavior only on the input(s) used to produce the dynamic
slice.

Finally, we note that 60 of the included criteria are impacted by the
execution environment. For example, the criteria scam_argv_18 (the slice
of the scam mug program taken with respect to argv at Line 18) outputs
scam.c.wasm when run by the wasmer WebAssembly runtime, but ./scam
when run as a compiled binary. The other causes include, for example,
different implementations of read by wasmer and WebAssembly’s use of 32-
bit long ints in contrast to the native machine’s 64-bit long ints. The discussion
section considers the impact of this final difference.

3.5. Metrics
We collect time and size metrics for each slice on a 676-core computing

cluster using 2.20GHz Xeon(R) E5-2650 CPUs. The cluster has 256GB RAM

15



per node and runs Centos 7. We use clang version 13.0.0, wasmer version 4.2.5,
wasm2wat version 1.0.34, and pORBS version 5.0.

Time. We measure the time taken to compute each slice using both the
CPU (user) time, to reflect the computational effort required to compute the
slice, and the wall clock (“real”) time, which is sometimes significantly lower.
Unless otherwise specified, when providing timing data, we are reporting the
user time.

Size. When reporting sizes we report the number of non-comment, non-blank
lines of code as reported by the tool sloc_count_c applied to the C code and
to the WebAssembly code of the function containing the slicing criterion. For
compiled WebAssembly code this is the same as non-blank lines because the
code is devoid of comments, except that we omit the function’s declaration,
its declaration of local variables, and all end lines.

3.6. Implementation
This subsection provides implementation details regarding the configu-

ration of the experiments. First, to create a WebAssembly module from C
source code we use clang with the target wasm32-unknown-wasi and then convert
the binary to its textual representation using wasm2wat2. We use the com-
piler options -O2 -lm -fno-inline-functions, the latter prevents the compiler from
inlining the function that contains the slicing criterion. We then prepend the
closing parenthesis of each function in WebAssembly by a newline in order to
enable ORBS to remove the last instruction of a function without breaking
the syntax of the WebAssembly code.

Second, to slice using a single function as the CoI we split the Web-
Assembly file into three parts: file.wat.prefix, file.wat.function, and file.wat.postfix.
ORBS is then applied to the lines of file.wat.function only. Thus extracting
the function containing the slicing criterion. To compile and execute the pro-
gram, the three parts, including the reduced file.wat.function, are concatenated
together.

One motivation here is that the WebAssembly compiler includes a lot
of library code (e.g., code for all functions required from libc). Slicing this
code impacts ORBS’ running time, which is proportional to the number of

2https://github.com/WebAssembly/wabt
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lines considered. As discussed with RQ1, slicing a single function reduces the
amount of work by almost two orders of magnitude.

Most of the code we analyze is from compiler benchmarks that include a
single prescribed input. The exception to this is the classic slicing examples,
where we use sufficient inputs to cause the dynamic slice to be equivalent to
the static slice, and bc where we use a random sample of sixteen tests from
the bc test suite.

While we evaluate the ideal window size in RQ5, we use a window size of
δ = 6 in the other research questions.

Finally, we consider slices based on a single slicing criterion. While it
would require some engineering work, creating a single slice based on multiple
slicing criteria would not impact the slicing algorithms nor should it impact
our insights.

4. Evaluation

This section empirically investigates each of our seven research questions.
All source programs and the slices computed by each slicer, as well as the
scripts used in this evaluation, are available in our replication package3.

4.1. RQ1: How Practical is Applying ORBS Directly to WebAssembly Pro-
grams?

For RQ1 we consider the time taken by each slicer. Of particular inter-
est here is the performance of applying ORBS to WebAssembly functions.
Because the average function size is reasonably constant and much smaller
than the average program size, slicing only the code of a specific function is
hoped to prove practical. For the evaluation, we define our “time to get a
cup of coffee” practical time as 1000 seconds or approximately 15 minutes.

Figure 3 summarizes the times taken by each slicer. Of the three, CSE is
the slowest slicer, which is unsurprising given that it considers deletions over
the entire WebAssembly file, which has a median SLoC of 9 496 instructions.
With a minimum slicing time of 92 minutes, none of CSE ’s times fit within
our definitions of “practical”. Compare this with SCE where the median size
of the C programs is 201 SLoC, requiring ORBS to consider approximately
50 times fewer deletions.

3https://zenodo.org/records/14851417
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Figure 3: Slice times for each slicer. The graph uses a log scale on the y-axis.

SCE and CES are close in terms of time. SCE ’s slicing times range from
32 seconds to 337 minutes with a median of 7.49 minutes, while CES’s slicing
times range from 22 seconds to 279 minutes with a median of 11.40 minutes.
That SCE and CES’s times are so similar comes as a bit of a surprise given
that SCE considers the entire C source file, while CES considers only the
WebAssembly instructions of a single function.

Looking at our “cup of coffee” practicality threshold, CSE fails to produce
a single slice within the allotted time. SCE and CES are more successful,
producing respectively 1032 (63%) and 1024 (62%) of the 1643 slices consid-
ered. In terms of wall-clock time, which may be more relevant in terms of
practicality, CSE still fails to produce a single slice within the allotted time,
while SCE and CES respectively produce 1359 (83%) and 1228 (75%) slices
within the time limit.
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1 int g, *p;
2

3 foo()
4 {
5 bar();
6 *p = 42;
7 }
8

9 bar()
10 {
11 p = &g;
12 }

Figure 4: The slice of bar has to retain p = &g when slicing just bar . However, when
slicing the entire program, if the slicer can remove *p = 42 then it can subsequently
safely remove p = &g.

RQ1: Applying ORBS to an entire WebAssembly file (CSE) is not prac-
tical. With a median time of 7.49 minutes, slicing an entire C program
(SCE) and, with a 11.40 minutes median focusing ORBS on the func-
tion containing the slicing criterion (CES), both largely fit within our
definition of practical.

4.2. RQ2: Which of SCE , CSE , and CES Best Balances Speed and Precision?
Building on RQ1’s consideration of slicing times, RQ2 factors in slice size.

We first consider the slices of CSE and CES. By focusing ORBS deletion on
the lines within a given function, CES is notably faster than CSE . The
question is, does faster come at the expense of slice size? For example, when
the slicer has access to the entire file the removal of code outside a function
might enable the removal of code within the function. Figure 4 illustrates
this phenomenon at the source level.

Figure 5 depicts the distribution of slice sizes relative to the original size
of the function being sliced. Table 2 provides some descriptive statistics for
the slice sizes. The mid-point lines of Figure 5 show the median. That the
median is less than the mean indicates the presence of a small number of very
large slices and makes the median the better representative of the expected
size.

The slice size distribution of CSE and CES are similar. Numerically, the
median slice size for CSE is 13.18% of the original code, which is 50% higher
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Figure 5: Size in SLoC of the function being sliced as a percentage of the original function
size (cropped at 150%). Values higher than 100% indicate that the slice is larger than the
original function. A typical cause for this is compiler loop unrolling.

than the CES median of 8.96%. We expected the two to be similar and
furthermore that CSE would always produce the smaller slice. Surprisingly,
this is often not the case: 709 (43.15%) of the CSE slices are actually larger
than the corresponding CES slice. The cause of this unexpected result is
investigated as part of RQ3’s qualitative investigation.

We expect SCE to produce larger slices than CSE and CES when, for
example, the latter two remove parts of the standard function entry and exit
boilerplate code. Empirically, an SCE slice is larger than the corresponding
CSE slice 83% of the time and larger than the corresponding CES slice 76%
of the time. One of the more interesting causes is when the sliced C code is
reduced to the point where the compiler opts to perform loop unrolling. Such
optimizations trade compiled function size for performance and can result in
larger slices. This also explains why the size of some SCE slices is more than
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Slicer Median Mean Min Max Std. Dev.
SCE 17.46% 31.03% 0.21% 289.13% ± 34.76
CSE 13.18% 23.37% 0.00% 95.00% ± 24.36
CES 8.96% 20.35% 0.11% 100.00% ± 23.65

Table 2: Slice Size Statistics

100% of the sliced function. The most extreme case is adpcm_wd_402_expr,
which is almost three times larger than the original function. We investigate
this effect as part of RQ3’s qualitative look at the slices.

RQ2: SCE produces notably larger slices than CES and CSE . Combining
this with the results from RQ1, we find that CES best balances speed
and precision.

4.3. RQ3: What Qualitative Differences are There Between the Slices Pro-
duced by the Three Slicers?

RQ3 takes a qualitative look at the slices. To do so, we compute the size
difference for each slicing criterion and then sort the differences. We then
inspected random examples from the largest and the smallest differences,
both positive and negative, and report interesting patterns. We first compare
CSE and CES and then SCE and CES. We omit the direct comparison of
CSE and SCE because it is similar to that of SCE and CES.

4.3.1. Comparison of CSE and CES
CSE produces a smaller slice in 562 cases, the same size in 372 cases,

and surprisingly CES produces the smaller slice in 709 cases. Interestingly
the median difference is 0 lines, and 71% of the slices differ by five or fewer
instructions. We consider four representative examples, two from each end
of the spectrum.

The first example compares the slices taken with respect to sumprod_i_10
and illustrates the situation where CSE removing code from outside the func-
tion containing the slicing criterion enables it to remove code from within the
function. In this example, the compiler reuses the stack location of main’s
first parameter, argc, to hold the value of index variable i. In a C program,
argc is always at least one because the count of the arguments includes the
name of the program. The CES slice does not slice outside of main and
thus the counting code is retained and the location initially holds a non-zero
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value. Therefore, in the compiled version of for (i = 0; ...) the initialization
of i on Lines 81 and 82 of the following code must be retained:
37 (func $main (type 3) (param i32 i32) ....

...
81 i32.const 0
82 local.set 0 ;; i = 0

However, in the CSE slice the argument counting code gets sliced out leaving
argc with the value zero. Thus in the SCE slice, there is no need to initialize
variable i. Consequently, Lines 81 and 82 are omitted from the SCE slice.

Another interesting example is the slices taken with respect to
fasta2_offset_49. The CES slice includes the following code while the CSE
slice includes only the final instruction.

i32.const 61
i32.mul
global.set $__stack_pointer

Here the CES slice has co-opted the first two instructions from the size com-
putation found in the following C code (for typesetting reasons the names
have been shortened).

need = string_length * 60;
buffer = malloc ((( need + (need / 60)) + 1);

The co-opting is safe because the required activation record size is less than
the amount allocated. While the changes are intricate, in brief, the CSE
slice omits from each function all of the standard entry code for creating a
stack activation record. Doing so causes all functions to share a common
activation record. For this particular slice, doing so is safe because each
function call is the final instruction of its function body (a situation similar to
tail recursion). In contrast, because a CES slice removes nothing from other
functions, it must maintain the stack discipline and allocate stack space for
its local variables.

Reflecting on these two representative examples, in the first retaining
the initialization of i makes the slice larger but more straightforward to
understand. In the second slice, the co-opted code is not the standard stack
allocation code but its presence is better than the absence of any such code.
Thus, in both cases CES produced the preferred slice.

Turning to criteria for which the CES slice is smaller, we first consider
the slices taken with respect to adpcm_inc_170, where the CSE slice is three
instructions longer than the CES slice. The three instructions initialize local
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1 with a copy of the stack pointer.
global.get $__stack_pointer
local.tee 1
global.set $__stack_pointer

The reason that the CSE slice can’t remove these instructions is twofold.
First, the printing functions of the CSE slice have become specialized to print
the particular location used in the code as the slicing criterion. Copying the
stack pointer to local 1 ensures that these specialized functions continue to
find the value where they expect it. Second, the call to printf is the last
instruction in the function being sliced which precludes the need to maintain
a separate activation record for this function.

Our fourth example, shown in Figure 6, considers the slice taken with
respect to spectral-norm1_i_10. In the figure the comments show the three
deletions used by the CES slicer to remove the ten instructions from within
the loop: CES first removes lines annotated with 1, then lines annotated with
2 which have become contiguous after the first deletion, and then finally the
lines annotated with 3. The code is the compiled version of the C statement
Au[i] += eval_A(i, j) * u[j], which CES correctly omits from the
slice. In the code of Figure 6 the update of Au[i] is done through a pointer
held in local variable 5.

The removal is prevented in the CSE slice by changes in the call-
ing functions that affect the allocation of the array Au. The net ef-
fect is that the address of Au[i] overlaps with the loop counter i. In
the sliced code, the value of u[j] is always zero, and thus the addi-
tions to Au[i] do not change its value (nor the value of i). How-
ever, the removal of the three instructions labeled “ ;; 1” leads to the
repeated incrementing of i, which causes the loop to terminate after a
single iteration. Inserting the following instructions before the loop en-
ables the deletion because it assigns local 5 an unused memory address.

i32.const 4242
local.set 5

Summarizing the four examples, from a qualitative perspective, CES
seems the better approach. CES sometimes produces larger slices, but the
difference is never large. On the plus side, its slices are often more easily
understood. In contrast, the smaller CSE slices are often more fragile be-
cause of the specialization of other functions, most notably those involved in
program IO.
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loop ;; label = @3
local.get 5 ;; 3 p = &Au[i]
local.get 6 ;; 3
local.get 4 ;; 2
local.get 8 ;; 2
call $eval_A ;; 2
local.get 7 ;; 1
f64.load ;; 1
f64.mul ;; 1
f64.add ;; 2
f64.store ;; 3 *p = ...

Figure 6: Code in CSE slice but not that CES slice.

4.3.2. Comparison of SCE and CES
We next compare the slices of CES and SCE . Comparing sizes, the CES

slice is smaller for 1249 slices, the same for only 22 slices, and larger for 372
slices. This is in line with the expectation that SCE produces the largest of
the dynamic slices and agrees with the quantitative data of RQ2.

Looking at examples where the SCE slice is smaller, the largest difference
is for the slices taken with respect to nbody7_x1_24 for which the CES slice
includes 322 instructions while the SCE slice is only 238 instructions long.
The main difference between SCE and CES is how the following loop gets
compiled:

for (i = 0; i < 5; ++i)
{

x[i] += DT * vx[i];
y[i] += DT * vy[i];
z[i] += DT * vz[i];

}

In the case of CES, the compiler unrolls the loop and results in 15 multi-
plications spanning 134 instructions, while in the case of SCE the loop does
not get unrolled, requiring only 26 instructions. Slicing at the C level changed
the optimizing behavior of the compiler.

As an illuminating example, the SCE slice taken with respect to
lms_x_160 includes 51 instructions, while the CES slice contains 93. The
C code includes two loops that ORBS can fuse together because none of the
intervening code is in the slice. In contrast, up against the window size of
six and the stack validation requirements, CES is unable to merge the two
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loops. Its efforts are in part thwarted by its inability to remove a call to a
function with six arguments because the call requires six push instructions
followed by the call, which pops the six elements from the stack. Satisfying
the validation requirement necessitates removing the six pushes and the call
in a single deletion, which is not possible using a window size of less than
seven. Slicing at the C level this call is a single line and thus easily removed.

We next turn to the dominant case where CES produces the smaller slices.
The most extreme case is for edn_j_140 where the CES slice includes 55
instructions while the SCE slice 585. This is an example where the compiler,
faced with the simplified C code, opted to unroll a nested loop, producing
64 copies of the simplified loop body. This pattern dominates the larger
differences.

As a second example, an interesting pattern occurs in the SCE slice taken
with respect to adpcm_wd_402. In the C slice, ORBS merges the function
containing the criterion with the function proceeding it in the source code.
The merged function involves considerably more code than the original func-
tion. When the “function” containing the slicing criteria is naively extracted,
the SCE slice contains instructions that are attributable to the statements
of the other function, making it much larger than in the CES slice.

Unlike the comparison of CSE and CES, the qualitative comparison of
SCE and CES is less one sided. In SCE ’s favor, slicing at a higher level
of abstraction enables SCE to remove code that is more difficult to remove
at the finer granularity level of WebAssembly code. Furthermore, in some
cases, slicing before compilation also enables additional compiler optimiza-
tions. However, some enabled optimizations are not beneficial, at least in
terms of slice size. An example is the slice taken with respect to edn_j_140.
Some of the SCE slices also included merged functions, which make the slice
harder to understand, while some include merged loops, such as the slices
taken with respect to lms_x_160. These challenges suggest hybrid techniques
such as first slicing the C code and then the compiled WebAssembly code.
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RQ3: Our qualitative examination of the slices reveals that, as with
RQ2, CES is often the preferred approach. This preference is, in part,
because slicing at a level of abstraction different from that of the final slice
(SCE) and slicing multiple functions (CSE) leads to structural changes
that make it hard to tie the slice back to the original source. Slicing a
single function at the WebAssembly level (CES) reduces the number of
structural changes in the code making it easier to tie the slice back to
the original source.

4.4. RQ4: For a Given Binary, what are the Pros and Cons of Static Slicing
Versus Dynamic Slicing.

RQ4 compares the static slices of CSE with those of CSE and CES. The
comparison is first done quantitatively using CES, as RQ1 through RQ3
suggest that it has the most desired trade-off, and then qualitatively using
both CES and CSE . For this research question, we cull from our dataset of
1643 slices 98 where the static slice fails to capture the correct semantics.

Quantitative evaluation. The chart on the left of Figure 7 compares the slice
sizes. By its very nature, CSE produces larger slices because of the need
to make safe static approximations. Compared to CES, the median static
slice size of 99.28% is approximately 11.4 times larger than the median CES
slice. This large median slice size is due to configuring CSE to slice the
printf call that includes the slicing criterion, which results in multiple memory
dependences being over-approximated. We detail this effect in our qualitative
discussion. As seen in the chart on the right of Figure 7, the median time
taken by CSE is 0.70 seconds, making it 992 times faster than CES’s 695s.
These differences are in line with related work [57].

Qualitative evaluation. Turning to qualitative differences, a common pattern
involves the function prologue and epilogue. Figure 8 illustrates this for the
slice taken with respect to nbody1_e_51 . The CSE slice on the right includes
the function prologue introduced by the C compiler. The CES and CSE slices
on the left omit this code. The difference is impacted by the conservative
over-approximations made by CSE when performing data-flow analysis. In
this case, it considers all globals as dependences. On the other hand CES
and CSE can remove those parts of the prologue and epilogue that do not
impact execution. Notice also that the CSE slice preserves the writing of 0 to
local 2. It turns out that during execution, local 2 is always 0, so the write
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Figure 7: Slice size and times for the static slicer and CES. Note that the time graphs
uses a log scale on the y-axis

has no effect. A dynamic slicer can take advantage of this fact to remove
the associated code. Finally, the last instruction of both slices is different:
CES/CSE may only remove instructions, while CSE can replace instructions
with “dummy” instructions. In this case, local.get 3 was replaced by
f64.const 0. In effect, the static slice more accurately reflects the return
type, f64.

Manual inspection of the CSE slices finds that they preserve the function
prologue only 1% of the time. We also noticed several cases where the pro-
logue is partially removed. All are similar to the following CSE slice taken
with respect to cover_c_112 where the stack pointer is saved in a local
and later used to store a value in the linear memory. This may overwrite
data used later in the original computation but that is not required by this
specific slice. In general, a static slicer is unable to model memory depen-
dences precisely, whereas a dynamic slicer, by its very nature, can precisely
characterize them.
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CES / CSE CSE
1 ;; prologue: ;; prologue:
2 ;; empty ;; move stack pointer
3 global.get 0
4 i32.const 16
5 i32.sub
6 local.tee 2
7 global.set 0
8 ;; body of the function
9 ;; write 0 to local 2

10 local.get 2
11 i64.const 0
12 i64.store
13 i32.const 1030 i32.const 1030
14 local.get 2 local.get 2
15 ;; slicing criterion ;; slicing criterion
16 call $printf call $printf
17 drop drop
18 ;; epilogue: ;; epilogue: restore
19 ;; empty ;; stack pointer
20 local.get 2
21 i32.const 16
22 i32.add
23 global.set 0
24 ;; return value ;; return value
25 local.get 3 f64.const 0

Figure 8: CES and CSE remove the function prologue and epilogue, while CSE does not.

1 global.get $sp
2 local.tee 1
3 global.set $sp
4 ...
5 local.get 1
6 local.get 0
7 i32.const 1
8 i32.add
9 i32.store

10 ...

Another limitation of CSE is that memory dependences can’t be tracked
precisely. Hence, as soon as one memory-related instruction (load, store)
or a call to an external function is part of the slice, all preceding memory-
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related instructions are included in the slice. The use of the call to printf
as the slicing criterion results in many over-approximations. This is not
the case for the dynamic slices, which only include the required memory-
related instructions. For example, comparing the CSE and CSE slice taken
with respect to nsichneu_b_2188 , we observed that both slices include a
necessary store instruction but that the CSE slice includes 9224 instructions
in total while CSE includes only 22 instructions. This is due to CSE ’s static
over-approximation. Such examples are valuable because they inform future
work on static slicing where there is a trade-off between the quality of the
static approximation and the effort spent.

An interesting case is the slice taken with respect to lms_arg_149. The
function lms has six parameters: float lms(float x,float d,float *b,int l, float mu,float
alpha). Unfortunately, calls to this function that need not be in the slice
cannot be removed by CES because doing so would require a window size
of at least δ = 7 to remove the six instruction-pushing parameters and the
call $lms instruction. CSE does not have the notion of window size and is
therefore able to remove calls to the lms function. As a result, CSE can
reduce the function from 105 SLoC to 25 SLoC, while CES reduces it to 31
SLoC.

Executability of static slices. Finally, we look at the semantics of the static
slices. Recall that CSE produces closure slices, which are not guaranteed to
preserve the original execution behavior. That 1545 of the 1643 slices (94%)
do so is impressive. It does suggest that CSE is being overly conservative.

Of the 98 slices that fail to exhibit the correct semantics, 81 produce the
same value for the slicing criterion at least the first time it is reached in
the program but diverge later in the program execution. This is expected
because CSE is focused on preserving the semantics of the program up to
the first time the criterion is reached, which is sufficient, for example, in
debugging. In cases where the function containing the criterion is called
multiple times, CSE attempts to preserve the semantics of only the first call.

Through manual investigation, we can categorize the remaining 17 cases
into two distinct classes of bugs. Thirteen cases are due to the slicer break-
ing stack discipline for specific patterns. For example, when the stack-
polymorphic unreachable instruction is being sliced, the slicer does not
replace it with instructions that preserve stack validity. The four remaining
cases include multiple calls to the function containing the slicing criterion,
where the criterion is not reached upon the first call to the function. In these
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cases, the return value of the function is not preserved, and the remainder
of the program’s execution diverges from its original execution, without ever
reaching the criterion.

RQ4: Dynamic approaches can perform more aggressive removals than
CSE . A classic example is the removal of the function prologue and epi-
logue. Also, dynamic approaches ensure the executability of the resulting
slice. CSE on the other hand, is not limited by a particular window size
and may remove large blobs of consecutive instructions that could not be
removed only partially. However, CSE , even if it has a focus on executabil-
ity, sometimes breaks executability. Looking forward, the shortcomings
identified by our experiments can be used to inform future work on static
slicing techniques.

4.5. RQ5: What is the ideal window size?
In this research question, we consider the impact of window size (δ),

which trades off slice size against slice time. In principle, a larger window
size will enable more deletions but will pay for this in increased running time.
Previous work [44, 51, 52] identified δ = 4 as an ideal window size for code
written in high-level languages. We expect this might be small for lower-level
code such as WebAssembly.

To illustrate this expectation we consider the slice taken with respect to
spectral-norm1_i_10_for. When using the window size δ = 4, the slice includes
the following eight instructions.

loop ;; label = @3 ;; L0 0
local.get 7 ;; L1 +1
local.get 8 ;; L2 +1
i32.const 1 ;; L3 +1
i32.add ;; L4 -1
local.tee 8 ;; L5 0
i32.ne ;; L6 -1
br_if 0 (;@3;) ;; L7 -1

end

We have annotated each instruction with its impact on the stack (end is not
an instruction). Mandating that each deletion satisfies the WebAssembly
validation requirement renders the deletion of this loop impossible using a
window size of four. It is not until δ = 7 that this loop can be removed.

To investigate window size’s impact on the slices we computed the CES
slices using window sizes of 2, 4, 5, 6, 7, 8, 16, and 32. Figure 9 summarizes
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the results. Visually we can see that the size of the slice has a drastic decrease
from δ = 2 (median 41.57%) to δ = 4 (median 14.34%), but soon thereafter
stabilizes. For example, δ = 5, 6, 7, and 8 all have the same median size,
8.96%. Furthermore, the difference between δ = 5 and δ = 32, where the
percentage is 8.93%, is quite small.
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Figure 9: Median slice size and times for a range of window sizes.

In terms of time, we can see from Figure 9 that user time visibly increases
after δ = 7. Numerically it bottoms out at δ = 5 where the median time is
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391 seconds. For smaller values of δ, ORBS has to perform multiple deletions
to remove code that takes a single deletion with larger values of δ. Values
larger than δ = 5 incur the cost of starting additional processes for each dele-
tion attempt, which empirically is not worth it from a user-time perspective.
Recall that we rely on a parallel version of ORBS and a larger window size
involves greater parallelization. Finally, the wall-clock time trend shows an
initial reduction before visually stabilizing near δ = 6. Numerically, the bot-
tom is at δ = 16 with a median of 141 seconds. Given unlimited processors,
wall-clock time would monotonically decrease, but the machine used in the
experiments has only 24 cores per node, so with δ = 32 the computation is
spread across multiple nodes, which incurs the cost of increased coordination.

RQ5: Based on slice size a window size larger than δ = 4 is appropriate
for slicing lower-level WebAssembly code. Balancing the greater size
reduction and diminishing wall-clock time against increasing user time,
puts the balance point between 5 and 7. In experiments other than this
one, we use a window size of 6.

4.6. RQ6: What is the impact of slicing at multiple levels of abstraction?
We now consider SCES, where we first slice the C source code and then the

compiled WebAssembly; thus SCES can be seen as a combination of SCE and
CES. First, the slice size distribution of SCES falls between SCE and CES.
Visually, as seen on the left of Figure 10, elements of the two distributions
are clearly evident in the SCES distribution. The results in terms of time are
summarized on the right of Figure 10. As expected, because there are two
slicing steps, SCES is slower than both SCE (where the median slowdown
is 15%) and CES (where it is 45%). The 15% suggests that slicing the
WebAssembly code after slicing the C code is comparatively quick. Finally,
considering the wall-clock time against our “cup of coffee” practicality goal,
1333 (81%) of the SCES slices satisfy this requirement. This is only slightly
less than SCE ’s 83%, again suggesting that SCES’s second slicing phase is
quick.

Turning to the individual slices, by construction, an SCES slice can never
be larger than the corresponding SCE slice. Empirically, in one case the two
are the same size and in the other 1642 cases, the SCES slice is, as expected,
smaller. This indicates that the extra slicing step almost always brings value
in terms of slice size. Comparing the median sizes shows that it is actually an
effective step: SCE has a median slice size of 17.5%, which drops to 10.0% for
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Figure 10: Slice sizes and times comparing with SCES.

SCES. Intuitively, the comparison with CES is less interesting but follows
the expected pattern with 1137 SCES slices (69%) being smaller, 198 (12%)
having the same size and 308 (19%) being larger, which accounts for the tall
spire seen in Figure 10.

Looking qualitatively at the largest differences, one of the most extreme
cases for a CES slice being larger is nbody7_R_31, where the SCES slice is 231
lines, while the CES slice is 339 lines. The explanation here is the presence of
the same loop unrolling as in nbody7_x1_24 considered in Section 4.3 where
we compared SCE and CES.

On the other end, we have the edn_j_140 slice being 496 lines for SCES
but only 55 for CES. As discussed in Section 4.3 the explanation here is the
sliced C encouraging compiler optimizations. Note that the SCES slice has
been reduced compared to the SCE slice in this case (from 585 to 496 lines).

RQ6: SCES is typically a bit more costly but often results in smaller
slices. Outside those cases where compiler optimization makes the slice
larger, SCES proves the more stable slicer —effectively shaving the rough
edges off of SCE and CES. Thus, when the source code is available, it
makes a better choice than just SCE or CES.

4.7. RQ7: What is the impact of a static/dynamic hybrid?
We next consider the CSES static/dynamic hybrid, which applies the

static slicer to the WebAssembly binary and then applies ORBS to the func-
tion containing the slicing criterion. The motivation here is to quickly re-
move code with the static slicer, before applying the more expensive ORBS
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approach to the reduced program. CSES brings value when the static slice
captures the correct execution semantics, which is not something that a clo-
sure slicer such as CSE guarantees. In this regard, the static slicer does an
impressive job of producing slices with the correct semantics for all but 98
of the original slices.
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Figure 11: Slice size and time comparison for CSES

We compare CSES with CES because consideration of our previous re-
search questions suggests that CES provides the best trade-offs. The chart
on the left of Figure 11 shows the size of the slices. Here CSES produces
the smaller slices, with a median size of 8.37%, compared to CES’s 8.72%.
Comparing the individual slices, 130 (8.41%) of the CSES slices are larger
than their CES counterpart, while 985 (64.75%) are the same size, and 410
(27.83%) and smaller.

Turning to slice time, as shown on the right of Figure 11, CSES brings the
expected drop in user time relative to CES. With a median wall-clock time of
4.33 minutes, it produces 1226 (79%) of its slices in under 15 minutes. With
a median user slicing time of 6.16 minutes, CSES is the fastest of the slicers
that dynamically slice WebAssembly. Slicing just the C code and computing
a static slice are both faster. Finally, for the majority of the slices (88%),
CSES produces the slice faster than CES. CSES is also more stable, with a
standard deviation of 27.18 minutes compared to CES’s 59.88.

We divide our quantitative inspection of the slices into three groups: the
cases where CES produces a larger slice than both CSE and CSES (6 cases),
the cases where CES produces a larger slice than CSES but for which the CSE
slice was larger than its CES counterpart (422 cases), and the cases where
the CES slice is smaller than its CSES counterpart (130 cases).
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In the first group, the most extreme case where CES produces a larger
slice is ndes_ietmp2_177, with 286 SLoC for CES and only 105 SLoC for
CSES. In this case, the CSE slice was already smaller than its CSE coun-
terpart, with 199 SLoC. It is one case where CSE has only preserved the
semantics for the first few executions of the slicing criterion but eventually
diverges. Hence, CSES inherits this limitation from CSE . CSES is able to
remove function prologue and epilogue which is maintained by CSE , as well
as memory dependences that were over-approximated by CSE .

In the same group, looking at slices where the CSE slice produced a valid
slice, an interesting case is lms_arg_149 discussed in RQ4, where CES would
require a higher window size to remove instructions, and therefore gets stuck
with a slice of 31 instructions. CSE is not limited by window size and re-
moves a group of 22 lines, getting its slice size to 25 SLoC because it over-
approximates in other places. CSES is able to further reduce the slice size
to only 8 instructions by removing the function prologue as well as other
over-approximations made by CSE .

In adpcm_diff_163 we see a similar pattern with extra instructions that
are preserved by CES because they are required by a sequence of instructions
that can’t be removed due to the window size. In this case, the CSES slice
is 40 SLoC, reduced from the 71 SLoC of the CSE slice, while the CES slice
is 107 SLoC.

The second group corresponds to cases where CES is between CSES and
CSE . For example, lms_flag_39 provides a similar situation to lms_arg_149:
there is a group of ten lines (five instructions in nested blocks) that cannot
be removed by CES due to the window size. CSE is able to eliminate the code
but over-approximates in other places resulting in a slice that is 19 instruc-
tions long. CSES is then able to remove unneeded memory dependences,
as well as the function prologue and epilogue, resulting in a slice of seven
instructions. A similar case arises in mandelbrot9_xy_14, where a complex
condition finishing with seven consecutive i32.and instructions needs to be
removed in order to be able to remove a loop that is not part of the slice:
CES preserves this condition and all its instructions, while CSE is able to
remove them, which enables CSES to further reduce the slice size.

Finally, the last group corresponds to the 130 cases where CES produces a
smaller slice than CSES. One pattern that can be seen in fasta3_seed_5 is the
following. The return value of the sliced function, a floating point number,
is irrelevant to the slice, hence CSE removes the instruction that computes
the return value and replaces it by f32.const 0. Moreover, the call to printf
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that forms the slicing criterion leaves an integer on the stack, which has to
be removed to ensure slice validity, hence CSE adds a drop instruction. CSE
also over-approximates but CSES manages to remove all over-approximation
code and ends up with a slice whose end is call $printf; drop; f32.float 0. CES
however keeps a f32.convert_i32_u instruction, which effectively converts the
return value of printf into a float, resulting in a slice ending with call $printf;
f32.convert_i32_u. In the end, the CES slice is one instruction shorter than
its CSE counterpart.

Another common pattern can be seen with fft1_xp2_64. CSES is able to
reduce the CSE slice from 98 instructions to 33 instructions. However, this
is larger than the 10 instructions of the CES slice. The cause is that when
applied to the CSE slice it is possible to remove an instruction whose removal
requires the subsequent retention of the roughly 23 additional instructions.

While less dramatic, this same pattern occurs in the lms_inc_86 slices
where the smaller sizes render the pattern easier to explain. Figure 12 shows
the CSE slice, the CSES slice, and the CES slice. The latter two are spaced
out to show the correspondence. The pre-slice version of the CES slice is not
shown because it is 118 instructions long.

Looking first at the CSE slice, Lines 11-14 are the compiled version of
the ORBS printf, where the address of the variable printed is retrieved by
local.get 1. Lines 7-9 store a 2 at this address. The CSE slice is annotated
with the three deletions performed when computing the CSES slice. The key
deletion is the second, which removes the instruction local.get 1. This
deletion is possible because Line 2 places the same value on the top of the
stack and Line 5 copies that value into Location 1. However, having deleted
Line 7, the slice must retain Lines 2 and 5 as shown in the center column.

Finally, in the CES slice shown in the rightmost column, Line 7 cannot
be removed. Unlike the CSE slice where the intervening code is only Line 6,
the compiled version of lms_sin includes over 50 instructions between the
local.tee 1 and the local.get 1; thus local.get 1 is retained and
the other instructions eventually all deleted.
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CSE CSES CES

1 (func (;10;) ...
2 global.get 0
3 3 i32.const 16
4 3 i32.sub
5 local.tee 1
6 2 global.set 0
7 2 local.get 1
8 i32.const 2
9 i32.store

10

11 i32.const 1024
12 local.get 1
13 call 19
14 drop
15

16 1 local.get 1
17 1 i32.const 16
18 1 i32.add
19 1 global.set 0
20 f32.const 0
21 )

(func (;10;) ...
global.get 0

local.tee 1

i32.const 2
i32.store

i32.const 1024
local.get 1
call 19
drop

f32.const 0
)

(func $lms_sin ....

local.get 1
i32.const 2
i32.store

i32.const 1024
local.get 1
call $printf
drop

local.get 2
)

Figure 12: Unexpected larger CSES slice example.
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RQ7: First applying the static slicer brings the anticipated benefit: slices
are smaller and are computed faster than the dynamic slicer with the
best trade-off, CES. Looking at the slices qualitatively, the main pattern
that emerges is that CSES inherits both benefits and limitations of CSE
and CES: it is able to remove a large range of instructions for which
a higher-window slice would be required by CES, but it may break the
executability of the slices. Furthermore, to CSE , CSES has the benefit of
overcoming the over-approximating nature of CSE .

4.8. RQ8: How do the slicers behave on real-world applications?
Finally, we evaluate the different slicers on a real-world system. In line

with other work that considers WebAssembly [5], we selected the real-world
application SQLite, which can easily be compiled to WebAssembly. More
precisely, we used the sqllogictest program4, one of the many test drivers
for SQLite. This application takes a test script as argument, composed of SQL
queries along with the expected results. It runs all queries in the test script
one by one and checks that the results are as expected. SQLite is embedded
within sqllogictest. In total, sqllogictest has 169 448 SLoC (non-blank,
non-comment, LoC) of C code. Compiled to WebAssembly, sqllogictest
counts 287 346 instructions.

We wrote one simple test script to be given as input to sqllogictest.
The test script exercises several parts of SQLite: it creates a table with two
columns, inserts two rows, selects all elements from the table, performs an
update to one row, and computes an average of the values. We selected six
slicing criteria that were reached at least once by the test script. We then
applied CES, SCE , SCES, CSE , and CSES to each criterion. We left out CSE
because RQ1 established that it is not a practical slicer.

The results in terms of slice size are shown in Table 3. The two-phase
slicers CSES and SCES achieve the highest reductions, followed by the one-
phase dynamic slicers CES and SCE , and finally by the static slicer CSE .
These results mostly align with the quantitative results from our other ex-
periments: in agreement with RQ6, SCES outperforms SCE . However, it
also outperforms CES in this experiment, contrary to the results of RQ6.
We explain why below. In agreement with RQ7, CSES also outperforms CES
and SCE . CSE unsurprisingly results in large slices, although the median size

4https://www.sqlite.org/sqllogictest/doc/trunk/about.wiki
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of 69.54% is more encouraging than RQ3’s median of 99.28%.
There are two factors that lead to SCES outperforming CES when slicing

the larger SQLite code. First, recall that when considering RQ3 we encoun-
tered slices in which SCE reduced the code to the point that the compiler
applied optimizations such as loop unrolling. In the larger SQLite codebase
none of the CSE slices enable such size increasing optimizations and thus the
subsequent slicing of the WebAssembly always leads to a smaller slice. The
second factor is evident when comparing the SQLite WebAssembly code for
the SCES and CES slices. The CES slices include code that is impossible
to remove with a window size of six without violating the stack validation
requirement. The SCE slice removes this code at the C level making the com-
bination more effective. While less pronounced, a similar effect is seen when
comparing the CES and CSES slices. The static slicer is capable of removing
rejoins of code that are not in the slice but that are too large for CES to re-
move (again without violating the static validation requirement). In essence
the static slicer first violates this requirement and then uses a reconstruction
step to satisfy the requirement. Doing so with ORBS would mean modify-
ing the WebAssembly runtime during slicing. This suggests there is value
in dynamic slicing while ignoring the stack validation requirement and then
running the static slicer’s reconstruction algorithm.

The results in terms of slicing time are shown in Table 4. The static slicer
CSE is the fastest by a large margin, followed by CSES, SCE , SCES, and fi-
nally CES. This is in line with our prior findings. Overall, CSE is the only
slicer that produces all slices in under 15 minutes. CSES is the only other
slicer producing a slice in under 15 minutes. Some of this larger run time is
the inevitable cost of executing a large system, but some is a limitation of
our current prototype tooling uncovered by this experiment. This limitation
is not inherent to ORBS. The slicer needs to convert the text representation
of the WebAssembly (a .wat file) into its executable form (a .wasm file), which
is costly for a large system. More sophisticated WebAssembly tools would
enable the slicer to convert all but the CoI to executable form as a prelim-
inary step ahead of the actual slicing. Doing so would speed up the slicing
process.

We investigated the executability of the slices. ORBS’ slices are valid
by construction and this is indeed the case for all six slices when computed
by CES, SCE , and SCES. The executability of CSE slices depends on the
correctness of the static approach: we notice two slices where the executabil-
ity is broken, namely inner and select. In both cases, the slicing criterion is
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reached at least the first time. Hence, CSE fulfills its promised guarantee of
preserving its execution at least once. The executability of the CSES slices
is directly impacted by the executability of the corresponding CSE slice, and
the results are the same.

Comparing the slices themselves, three patterns emerge. These include
the two noted above where the SCE and CSE slicers are able to remove code
that the CES slicer cannot. In addition, the SCES slices make good use of
the optimizer. A pattern that was not prevalent in the earlier experiments
that occurs in four of the six SQLite slices involves the SCE slicer removing
one branch of a conditional, such as Lines 4 and 5 in the following code.
When clang compiles the sliced code it essentially ignores Lines 3, 6, and 8,
exploiting the fact that r is undefined in the true branch and thus might as
well take on the value p->iSum. The resulting code omits a level of nesting
which enables the CES slicer to remove more code than it can when the
nesting structure is present because the removal of this structure is difficult
without violating the stack validation requirement.

1 if( p && p->cnt >0 ){
2 double r;
3 if( p->approx ){
4 r = p->rSum;
5 if( !sqlite3IsOverflow(p->rErr) ) r += p->rErr;
6 }else{
7 r = (double )(p->iSum);
8 }
9 printf ("\ nORBS: %.0f\n", r);

10 sqlite3_result_double(context , r/( double)p->cnt);
11 }

RQ8: On a larger application, our findings remain in line with the pre-
vious research questions. Size-wise, the hybrid slicers (SCES and CSES)
perform better. Time-wise, they also generally perform well, with CSES
being the fastest slicer aside from CSE . Performance results however are
on the lower side, with only one non-static slice taking less than our
15-minute goal (by CSES), and none by the other slicers that include a
dynamic component. These are due to limitations in the tooling and not
in the approach itself.
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Table 3: Slice Size for the sqllogictest experiments in WebAssembly SLoC. Percentages
represent the size of the final slice as a proportion of the size of the function containing
the slicing criterion measured in WebAssembly instructions.

Function CES SCE SCES CSE CSES
Criterion SLoC % % % % %

avg 57 35.09% 54.39% 26.32% 92.98% 36.84%
create 267 9.36% 11.99% 6.37% 94.76% 10.86%
drop 234 2.56% 11.54% 2.56% 29.06% 2.99%
inner 982 10.59% 9.78% 4.99% 57.03% 3.26%
insert 1944 3.96% 1.08% 0.31% 82.05% 1.70%
select 3387 2.83% 4.07% 1.09% 43.22% 1.24%

Average 10.73% 15.47% 6.94% 66.52% 9.48%
Median 6.66% 10.66% 3.78% 69.54% 3.13%

Table 4: Slicing time for the sqllogictest experiments. Times are given in seconds
and represent the total slicing time in user time, as well as the time to slice per SLoC of
the function containing the criteria, in terms of WebAssembly instructions. Underlined
entries are the ones below our 15-minute threshold.

Function CES SCE SCES CSE CSES
Criterion SLoC time time time time time

avg 57 1150 (20.18) 5377 (94.34) 6161 (108.09) 9 (0.16) 1050 (18.41)
create 267 4137 (15.49) 5784 (21.66) 6606 (24.74) 9 (0.03) 4201 (15.73)
drop 234 2392 (10.22) 6088 (26.02) 6680 (28.55) 9 (0.04) 854 (03.65)
inner 982 17222 (17.54) 3867 (03.94) 6186 (06.30) 9 (0.01) 7012 (07.14)
insert 1944 21082 (10.84) 8905 (04.58) 9182 (04.72) 10 (0.00) 14323 (07.37)
select 3387 33248 (09.82) 13322 (03.93) 16347 (04.83) 10 (0.00) 13636 (04.03)
Average 13205 (14.02) 7224 (25.75) 8527 (29.54) 9 (0.04) 6846 (09.39)
Median 10680 (13.17) 5936 (13.12) 6643 (15.52) 9 (0.02) 5607 (07.25)
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4.9. Discussion
Our initial experiments repeatedly pointed to CES as the preferred ap-

proach. CSE ’s slicing of the entire WebAssembly file is clearly too expensive.
SCE ’s slicing at the C-code level suffers from some undesirable compiler in-
teractions and what might be called a lack of boundaries. Furthermore, our
qualitative comparison finds the CES slices preferable to those of CSE and
SCE .

In terms of slice size, CES produces smaller slices than SCES, which
finds a middle ground between SCE and CES. However, SCES does a better
job on a real-world scenario, yielding smaller slices than CES in our SQLite
experiments. It is interesting that in this scenario the two slicing phases seem
to better compliment each other. CSES produces the smallest slices thanks
to the static slicer enabling deletions that would not be possible for CES due
to the window size. This comes at the cost of inheriting the limitations of
the static slicer in terms of the executability guarantee.

In terms of our “cup of coffee” definition of practical, CSE produces all the
slices of our subjects of Table 1 in under 15 minutes. SCE is the next most
successful slicer, producing 83% of the slices in under 15 minutes of wall-
clock time. It is followed by SCES (81%), CSES (79%), and CES (74%).
On a real-world scenario, however, the dynamic slicers require much more
time, with only CSES producing a slice in under 15 minutes. This could be
solved by improving the WebAssembly tooling without requiring changes in
the slicers. While static slicing and slicing the C source are faster, when it
comes to slicers that include slicing the WebAssembly code, our two hybrid
approaches are both improvements over the non-hybrid slicers.

There are however several issues worthy of consideration. The rest of
this section considers the four most prominent. The first issue concerns the
impact of the execution environment. We observed during our experiments
that the slice characteristics can be influenced by the environment. Notably,
the optimization setting of the C compiler has an important impact on the
WebAssembly code. More work needs to be done to better characterize the
impact of the environment. There is a link here with recent work that studied
how the execution environment impacts slicing [58].

Next, we revisited past experiments that consider OBRS’ window size.
At the WebAssembly level with a window size of four, it is impossible to
remove a call with four or more parameters because the code pushes all
the arguments before the call pops them. This observation motivated RQ5
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and also the design-space search that led to the value in SCES’s multi-level
slicing.

Third, one key challenge when slicing WebAssembly programs is main-
taining the validity of the code. We do this by requiring the slice to be
valid and executable after each removal. This prevents ORBS from remov-
ing certain patterns, which would temporarily violate validity but preserve
the semantics. The static slicer includes a reconstruction phase [42], which
might be used to reconstruct a valid program from an “invalid” dynamic slice.
Improving the dynamic slicer with such a phase could potentially enable the
slicer to produce smaller slices.

Finally, our experiments reveal that there are cases where the CSE slices
clearly under-approximate the true dependence. Further comparison between
the CSE and dynamic slices will help us better understand this dependence
under-approximation and consequently should suggest improvements to the
static slicer.

4.10. Threats to Validity
We identify threats to validity according to the classification of Wohlin et

al. [59]. We instrument each subject of our evaluation for each use of a scalar
variable in the program. As a threat to internal validity, other than a few
subjects, we did not consider the use of pointer variables as slicing criterion.
We leave this for future work. To enable comparing the different slices, we
have removed criteria whose slices exhibited non-deterministic behavior and
for which the SCE slice does not contain the criterion because it was removed
during the optimization phase of the C compiler.

A threat to external validity is our selection of subjects. These are all C
programs and our results may not generalize to other source languages. We
selected our subjects from various sources, given that there is no standard
benchmark of C programs that compile to WebAssembly.

5. Related Work

WebAssembly. There has been interest from the research community in Web-
Assembly on aspects such as security [5, 6, 7, 8, 9, 10, 11], extensions to the
language [60, 61, 62], tooling [63], program analysis [13, 64, 14, 15, 16, 65],
and optimizations [66]. WebAssembly being an assembly language, has been
compared to other assembly languages such as x86 [1, 8, 9]. We compare our
approach to CSE , the only existing slicer for WebAssembly [42]. To date, no
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other slicers for WebAssembly exist. Relying on existing dynamic analysis
frameworks [13] to implement a dynamic slicer remains to be investigated.

Slicing Applications. Application of program slicing [21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] stem from its ability
to reduces the side of the program under consideration. In their survey of
empirical results in program slicing [20], Binkley and Harman report that
the typical static slice is approximately one third of the program, while the
typical dynamic slice is approximately one fifth of the program. The value
this reduction brings in some cases, for example when the source code is not
available, requires the ability to slice at the binary level. This is the case
for re-engineering, program comprehension, and security analyses. A web
browser may, for example, run an analysis against a WebAssembly binary
before running the binary. Another use case is debugging WebAssembly
virtual machines, where a bug report containing hundreds of WebAssembly
instructions could be reduced to tens of instructions through program slicing.

Language-Independent Slicing. Our work relies on ORBS, a language-
independent slicing approach that observes the program output in order to
build an executable slice [44], which works at the line level [67, 68]. QSES
is a variant of ORBS that protects all lines of a static slice during dynamic
slicing, which has been applied to C programs [45, 52], but not at the as-
sembly level. It would be more beneficial for binary slicing to first apply
static slice to quickly eliminate a large portion of the code, before applying
dynamic slicing to further remove instructions. The use of ORBS stands
alone as all other dynamic slicers first instrument either the program itself
or its underlying runtime environment, and then use this instrumentation to
collect an execution trace of the running program [69].

Hybrid Slicing. Dynamic slicing traces its roots back to the work of Ko-
rel and Laski [70] who proposed a slicer based on the analysis of execution
traces. Parallel to the early development of static slicing [21, 71], Agrawal
and Horgan followed with a slicer that cached dependence information in a
dependence graph [72]. One of their four algorithms was essentially three
steps: compute the program’s program dependence graph (PDG), remove all
graph vertices that do not show up in an execution trace, and then slice the
reduced graph using the standard PDG static slicing algorithm. To the best
of our knowledge this is the first static/dynamic hybrid slicing algorithm.
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Almost a decade later, Nishimatsu et al.’s call-mark slicing [73] again
exploits both static and dynamic information. Their motivation is that dy-
namic slicing has a large time and space overhead because of the execution
trace size and the resulting large numbers of dynamic dependences. On
the other hand, conservative static data-flow analysis leads to imprecision.
In comparison, these two hybrid approaches are more integrated than ours,
which essentially combines static and dynamic slicers as black boxes. These
differences suggest a possible spectrum of possibilities where our black-box
approach is likely one end of the spectrum.

Slicing Binary Executables. Cifuentes and Fraboulet describe the first slicer
for binary executables [31]. Their work outlines the necessary modifications
to conventional slicing techniques needed to slice machine code and assembly-
type languages. A few years later Kiss et al. [74, 75] built on this to produce
an interprocedural static slicer for binary executables. The size of their inter-
procedural slices was between 56% to 68% of the instructions in the original
program. Similar to CSE , this implementation contains an imprecise (but
safe) memory dependence model.

Mangean et al. [76] built on the work of Kiss et al. [74], specifically the
latter’s graph-based approach, but widen the tools applicability to dynamic
slicing of binaries, independent from the target platform, by exploiting a
hardware simulator to extract data-flow information about each instruction.
This work is in some ways the most directly comparable to ours as they too
study the Mälardalen benchmark suite [54].

They report slice sizes for a number of different compiler configurations.
The average slice size is 22% of the code using gcc with no optimization, -O0,
and 37% when (greater) optimization is used. While we don’t consider the
influence of compiler optimization, in a simple experiment we see the same
pattern where the larger unoptimized code enables greater reduction. Using
the same optimization level, SCE ’s mean of 31% shows a similar performance.
With mean sizes of 23% and 20%, CSE and CES produce smaller slices
which reflects the greater precision that ORBS brings to the slicing challenge.
Mangean et al. do not provide detailed timing information, other than to note
that all slices were computed in under a second. The higher slicing time of
ORBS is clearly the cost paid for its greater precision.

Mangean et al. note some limitations of their tool such as programs con-
taining floating point arithmetic or switch-case statements and recursive pro-
grams. By directly observing the program in execution, observation based
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slicing is not challenged by these features, nor other common challenging
features such as reflection and third party libraries.

Slicing Android Apps. We now discuss two major tools to slice Android apps,
another form of binary executables that operate on a register-based virtual
machine (the Dalvik VM before Android 5.0, and ART afterwards).

Ahmed et al. study Mandoline, a dynamic slicer for Android apps that
slices compiled Jimple code [69], motivated by past work with the tool An-
droid Slicer [77], which makes several decisions that sacrifice accuracy for
low instrumentation overhead. In contrast, Mandoline, aims to use minimal,
low-overhead instrumentation followed by sophisticated, on-demand execu-
tion trace analysis. In comparison, this trade-off pays off and their approach
is faster and more accurate than its predecessor.

Mandoline is evaluated on 12 Android apps with known faults. Impres-
sively, the authors construct ground truth slices for these apps, a task that
took a daunting 30 work days. Each slice reproduces a bug, which leads to
the app crashing. The size of the slices (on average 0.04% of the code) is
orders of magnitude smaller than other slices. Since this includes the manual
slices and the output of two tools there must be something in the nature
of the criteria that leads to such small slices. For example, one artifact of
choosing a crash as the criterion is that it truncates the trace. Shorter traces
clearly reduce slicing time. It is also possible that early termination means
that the buggy statement executes fewer times and thus less of its depen-
dence gets uncovered. Evidence for this comes from comparing the size of
the program to the size of the traces. The number of instruction instances is
typically four to five orders of magnitude larger [78] but in this study is only
2.5 times as many.

The slice times are also interesting. Android Slicer takes about 4000 sec-
onds on average, while Mandoline about 725. This is a far cry from the “less
than a second” reported by Mangean et al. Assuming Jimple instructions are
comparable to those of WebAssembly, SCE takes an average of 450 seconds
and CES 700 seconds. However, the twelve Android apps are about an order
of magnitude larger.

Given their ground truth slices, the authors present the precision and
recall for each slice. Using this metric, ORBS is a clear winner. For example,
its slices all attain 100% recall as removal of any statement from an ORBS
slice will change the computation of the slicing criteria. Likewise, while not
nearly at the same level, we include comparison with ground truth slices for
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examples such as the MBE example, with its illustration of the fact that data
dependence is non-transitive. For these examples we attain 100% precision.

Similar to the other dependence based slicers, Mandoline slices include un-
necessary statements because it makes approximations. For example, when
looking for a definition of an element in a certain position within an array,
Mandoline includes definitions of all array elements. The authors also note
the following challenges of slicing in the Android environment: programs are
event-driven, asynchronous, and execute framework code. Observation based
slicing again sidesteps these challenge.

Slicing Java byte code. We conclude by considering three Java byte code
slicers, which like WebAssembly uses a stack-based architecture.

Wang et al. [78], present a dynamic slicer for Java that performs trace
collection using a modified Kaffe Virtual Machine. They make use of “reverse”
stack simulation to identify implicit data dependences between byte codes
involving data transfer via the operand stack.

Their experimental subjects average about 10 000 byte codes, which, as-
suming Java byte codes are comparable to WebAssembly instructions, is
essentially the same size as the programs we study.

Their overall average slice includes 16% of the original byte codes, which
is slightly less than CES’s 20%. The most likely explanation for this is
WebAssembly’s stack validation requirement. Our manual inspection of the
WebAssembly slices includes multiple examples of code that can be removed
without affecting program behavior except that it violates the stack valida-
tion requirement. Comparison with the work of Wang et al. suggests that
the cost of this requirement is no more than 4% modulo imprecision in their
analysis. Finally, the paper provides only relative timing comparison, so it
is unclear how much time the slicer takes.

The authors note that their tool is challenged by Java language features
such as reflection, native methods, and multi-threaded code. All challenges
that observation-based slicing sidesteps.

Ahmed et al. [79] present Slicer4J and compare it with the older
JavaSlicer [80]. They note that JavaSlicer only supports programs up through
Java 6, while Slicer4J supports up through Java 9. One clear advantage to
observation based slicing is that it supports current and future versions of
Java provided there is a compiler for the language.

To support Java framework methods and native code, Slicer4J relies on
a set of pre-constructed data-flow summaries of framework methods. Here
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again our dynamic slicers do not incur the cost of the construction of such
models.

Unlike JavaSlicer, which modifies the JVM, Slicer4J instruments JAR
files. Thus, Slicer4J is unable to slice classes that are dynamically generated
at runtime. For programs that are large but have small execution traces,
JavaSlicer’s instrumenting on-demand saves a substantial portion of instru-
mentation cost, leading to better performance. Likewise, observation based
slicers benefit when the tests execute only a small portion of a (large) pro-
gram.

Empirically, the authors compare Slicer4J and JavaSlicer using three pro-
grams from the Defects4J benchmark [81] again using failing test assertion
statements as the slicing criteria. These three are an order of magnitude
larger than the subjects of Table 1. Slicer4J takes an order of magnitude less
time than JavaSlicer requiring between one and four minutes to instrument,
execute, and slice. Given that the subjects are an order of magnitude larger,
this is still notably faster than the dynamic slicers we study. As with the
slices computed by Mandoline, the average slice size ranges from 0.13% to
4.07% of the program’s LoC, likely for the same reason.

6. Conclusion

We introduce four dynamic slicing approaches for WebAssembly binaries,
namely CES, CSE , SCE , and SCES, as well as a hybrid slicer, CSES. We
compared these and the static WebAssembly slicer CSE using eight research
questions. Our evaluation using a set of benchmark programs shows that
CSE requires much more time than the other approaches, while not reducing
slice size as much as expected. SCE itself may result in slices that grow in
size and have a different structure, due to the compilation phase happening
after slicing, which leaves room for extra optimization. A static approach is
favorable in terms of running time but results in the largest slices due to its
over-approximation. SCES, a combination of both SCE and CES, improves
the stability of the slices, reducing the size of SCE slices. In terms of the
purely dynamic approaches, for the benchmark programs, CES yields the
best trade-off in terms of running time, slice size, and inspectability of the
resulting slices. It is interesting that for our larger, non-benchmark, system,
we see that SCES (and CSES) benefit from the two slicing phases. Thus
given the modest increase in computation time that SCES brings, it may
be preferred when slicing larger systems. Likewise, combining static and
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dynamic slicing, CSES brings a considerable reduction in slicing time and
may be preferred in applications where semantic preservation is not crucial.

Our empirical investigation suggests several avenues for future work. The
validation requirement could be lifted to create smaller slices as long as the
slices are later reconstructed using an algorithm akin to the one used by the
static slicer. This should enable the dynamic slicers to produce smaller slices.

Regarding window size, our experiments have shown that δ = 6 is a sweet
spot, which is a notable difference to slicing at the source level where δ = 4
yields best results [44, 51, 52]. However, we still notice multiple patterns
where a higher window size is desirable. Our experiments have shown that
this has a cost in slicing time. Experimenting with heuristics to adapt δ
dynamically could benefit slice size with a lesser impact on slicing time. We
noticed for example that most large deletions happen in the first pass of the
slicer, indicating that subsequent passes might limit window sizes to smaller
values. Another interesting heuristic would be to “back up” by one line after
a deletion, instead of continuing slicing with the next line.

Finally, some of the patterns we encountered involved the local.tee
instruction that could not be removed as it was needed to write over a local. A
local.tee x instruction is equivalent to local.set x; local.get x.
In multiple slices, an amorphous slice [82] would be helpful as it could replace
the local.tee instruction with local.set.

In summary, compared to our earlier investigation of dynamic slicing for
WebAssembly [43], this work shows that a larger window size is desirable
when slicing at a lower level of abstraction, that slicing at multiple levels of
abstraction further reduces slice size in most cases at a small cost in additional
run time, and that a combination of static and dynamic slicing improves both
slicing time and slice size compared to the previously established best trade-
off, CES.
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