
A General Method for Rendering Static Analyses for
Diverse Concurrency Models Modular

Quentin Stiévenarta, Jens Nicolaya, Wolfgang De Meutera, Coen De Roovera

aSoftware Languages Lab, Vrije Universiteit Brussel, Belgium,
{qstieven,jnicolay,wdmeuter,cderoove}@vub.ac.be

Abstract
Shared-memory multi-threading and the actor model both share the notion
of processes featuring communication, respectively by modifying shared state
and by sending messages. Existing static analyses for concurrent programs
either model every possible process interleavings and therefore suffer from the
state explosion problem, or feature modularity but lack in precision or in their
support for dynamic processes. In this paper we present a general method
for obtaining a scalable analysis of concurrent programs featuring dynamic
process creation. Our ModConc method transforms an abstract concurrent
semantics modeling processes and communication into a modular static anal-
ysis treating the behavior of processes separately from their communication.
We present ModConc in a generic way and demonstrate its applicability by
instantiating it for multi-threaded and actor-based programs. The resulting
analyses are evaluated in terms of precision, performance, scalability, and
soundness. While a typical non-modular static analysis time out on half of
our 56 benchmarks with a 30 minutes timeout, analyses resulting from the
application of ModConc can analyze all of them in less than 30 seconds,
while remaining on par in terms of precision. Analyzing concurrent processes
in isolation while modeling their communications is the key ingredient in
supporting scalable analysis of concurrent programs featuring dynamic process
communication.
Keywords: static analysis, modular analysis, concurrency, actors, threads
2000 MSC: 68N15, 68N19, 68N30

Preprint submitted to Journal of Systems and Software November 8, 2021

1. Introduction

In most concurrent programming models, programs consist of entities
called processes that run concurrently to each other and that interfere through
communication effects. Interprocess communication effects can be accesses
and modifications to shared variables in thread models, or messages exchanged
between different actors in the actor model [4, 45]. At run time, a single process
in a concurrent program may create an unbounded number of additional
processes. This combination of process creation and communication effects in
concurrent programs results in highly dynamic control flow and data flow.

Static analyses for concurrent programs have been proposed, and are
discussed in details in Section 8. Most of these existing analyses either
explicitly take into account every possible interleaving of concurrent executions
at points where interprocess communication occurs, rendering them non-
scalable as they are subject to the state explosion problem [94], or are
modular but limited in one of the following important properties: automation,
precision, or support for programs in which the set of processes evolves
dynamically. Performing static analysis of concurrent programs featuring
unbounded processes in an automated, scalable, and precise way is therefore
still an open problem, which we tackle in this paper.

Scalability of a static analysis can be achieved by modularizing it according
to the general framework proposed by Cousot and Cousot [21]. A modular
analysis treats the behavior of components (in our case, processes) separately
from their interferences (in our case, communication). Modular static analysis
has been explored in the context of shared-memory concurrency by Miné et
al. [71] and for synchronous sequential processes by Midtgaard et al. [66].
However, these and similar analyses are limited to programs with a known and
fixed number of processes and therefore do not support analyzing programs
where processes can be created dynamically.

In a modular analysis, the analysis of a component can trigger other
components for re-analysis. This violates the notion of compositionality of
an analysis, in which the results of the analysis for a whole program are the
composition of the results of the analysis of each component. In a modular
analysis, the results of the analysis follow from a fixed point obtained in the
analysis of each component, having taken other components that interfere
with it into account. In the case of concurrent programs, a thread that
accesses a variable that is modified by another thread has to be reconsidered
for analysis, as is one actor to which another actor may send a message.

2

This paper proposes ModConc, an approach for the modular static anal-
ysis of concurrent programs with unbounded dynamic process creation. This
sets it apart from the aforementioned modular analyses for concurrent pro-
grams [71, 66], which require a static process topology. We design ModConc
as a general technique to design scalable modular analyses of concurrent
programs based on their concurrent semantics. We demonstrate the use of
ModConc to render an AAM-style analysis [50] of concurrent programs
scalable. AAM is a well-studied abstract interpretation method, and is used
here to analyze the behavior of a single process in a flow-insensitive and
context-insensitive manner. We demonstrate our approach on two concur-
rency models supporting dynamic process creation: threads and actors. Note
that the choice of AAM and of the sensitivities is made only to demonstrate
the application of ModConc, and that ModConc is not limited to such
analyses.

The core insight behind ModConc is that the dynamic behavior of a
process is entirely defined by its code and its communication effects. We
therefore construct an intra-process analysis that analyzes a single process in
isolation to infer the processes created and communication effects generated by
this process under a given set of input conditions. The intra-process analysis
is based on a modified version of the program semantics, replacing concurrent
operations by operations that denote the corresponding generated effects but
otherwise do not modify the analysis state of other processes in any way. The
information obtained from the intra-process analyses is subsequently used
by an inter-process analysis to compute the set of processes that interfered
with the analyzed processes and therefore require (additional) intra-process
analysis. When no new interprocess communication effects can be discovered,
a sound over-approximation of the behavior of all processes in the program is
obtained. The result is a modular —in the sense of Cousot and Cousot [21]—
whole-program analysis for concurrent programs that infers the set of all
running processes and their communication effects in a sound and scalable
manner.

A ModConc analysis is capable of inferring properties of concurrent
programs that form the foundation of tool support for addressing pressing
problems in software engineering such as program comprehension, bug detec-
tion and program verification. These inferred properties concern the processes
created and their communication effects in addition to the traditional data
and control flow properties computed by analyses for sequential programs.
Our evaluation demonstrates that modular analyses designed with ModConc

3

scale linearly with both the number of abstract processes created and the
number of communication effects. The analyses do not suffer from the state
explosion problem and are therefore able to analyze concurrent programs from
a benchmark suite that consists of the actor-based programs from the well-
known Savina benchmark suite [56] and their shared-memory multi-threaded
equivalent, in a matter of seconds.

To summarize, the contributions of this paper are the following.

• An extension of the framework by Cousot and Cousot of modular
analysis [21] to concurrent programs with dynamic process creation.

• The application of this extension to both thread-based and actor-based
concurrency.

• The formalization, empirical validation, and discussion of termination,
soundness, and complexity of the approach on an analysis for thread-
based and actor-based concurrency.

• The construction of a benchmark suite composed of programs exposing
dynamic creation of threads in a shared-memory concurrency setting,
similar to the Savina benchmark suite for actor programs.

2. Context: Models of Concurrency and Their Dynamic Behavior

Most concurrency models share the concepts of processes and commu-
nication. A process is a unit of computation isolated from other processes,
except for interferences (communications) that can occur between processes.
In the thread model, a thread is a process and communication happens
through shared variables, locks, and thread joining. In the actor programming
paradigm, an actor is a process and communication happens through the
exchange of messages.

Communication effects may trigger new computations, influence already-
running computations, or be used for synchronization. Process creation is one
of many possible communication effects, and an inherent part of concurrent
models is the ability of a running process to dynamically create an unbounded
number of new processes. Unbounded dynamic process creation is often
ignored by existing static analyses for concurrent programs (see Section 8),
which can only handle a fixed set of processes.

4

2.1. Dynamic Concurrent Example: factorial
We explore dynamic concurrency through a concurrent divide-and-conquer

approach to a factorial computation. Note that for our examples we use
a Scheme-like language, of which we define the core semantics in the next
section. Because of the commutativity of multiplication, computation of
a factorial can easily be divided in smaller chunks of work. Consider the
computation of 100! = Π100

1 i, and how it can be split into sub-computations
as represented in Fig. 1. We will represent each of these sub-computations as
a process in the following thread-based and actor-based implementations.

Π100
1 i

Π50
1 i Π100

51 i

Π25
1 i Π50

26i Π75
51i Π100

76 i

Figure 1: Representation of a concurrent computation of a factorial.

Thread-based approach. The program in Listing 1 implements every node of the
computation tree as a thread. Every thread performs a recursive call to fact-
thread that either splits the node in two subtrees to perform the concurrent
computation and to multiply the results from the two subtrees, or computes
the partial product directly. Πb

ai is implemented as (fact-thread a b).
Function split splits an interval in multiple intervals, for example

(split 1 100) may evaluate to '((1 . 50) (51 . 100)). Global vari-
able FragmentSize specifies the cut-off factor (expressed as the size of an
interval) at or below which an interval is computed sequentially rather than
concurrently. Function product sequentially computes the product of integers
in a given interval, i.e., (product a b) computes Πb

ai sequentially.
1 (define (fact-thread from to)
2 (if (<= (- to from) FragmentSize)
3 (product from to)
4 (let ((steps (split from to)))
5 (foldl * 1
6 (map (lambda (t) (join t))
7 (map (lambda (bounds)
8 (spawn

5

9 (fact-thread (car bounds)
10 (cdr bounds))))
11 steps))))))
12 (define (fact n)
13 (let* ((t (spawn (fact-thread 1 n)))
14 (res (join t)))
15 (printf "fact(~a) = ~a~n" n res)))
16 (fact (read-integer))

Listing 1: Thread-based program that computes a factorial.

Actor-based approach. In the actor-based program in Listing 2 every node of
the computation tree is implemented as an actor that starts with behavior
fact-actor. Upon reception of a compute message, fact-actor either
directly computes the product of factors and sends the result back to its
parent, or it splits the computation in newly created actors and changes
its behavior to fact-actor-wait. The fact-actor-wait behavior waits for
receiving partial products through computed messages, and multiplies partial
products together until it has received all expected partial products. It then
sends the result to its parent. A master actor creates the root fact-actor
and displays the results when the computation is finished.

1 (define fact-actor
2 (actor ()
3 (compute (from to parent)
4 (if (<= (- to from) FragmentSize)
5 (let ((partial-fact (product from to)))
6 (send parent computed partial-fact)
7 (terminate))
8 (let ((steps (split from to)))
9 (map (lambda (bounds)

10 (send (create fact-actor)
11 compute (car bounds) (cdr bounds) self))
12 steps)
13 (become fact-actor-wait 0 (length steps) 1 parent))))))
14 (define fact-actor-wait
15 (actor (received fragments current parent)
16 (computed (result)
17 (let ((new-result (* current result)))
18 (if (= (+ received 1) fragments)
19 (begin
20 (send parent computed new-result)
21 (terminate))
22 (become fact-actor-wait
23 (+ received 1) fragments new-result parent))))))
24 (define master-actor
25 (actor ()
26 (compute (n)
27 (send (create fact-actor) compute 1 n self)
28 (become master-actor))
29 (computed (res)
30 (printf "result = ~a~n" res))

6

31 (become master-actor)))
32 (define act (create master-actor))
33 (send act compute (read-integer))

Listing 2: Actor program that computes a factorial.

2.2. Process-Modular Analysis Designs
ModConc analyses follow what we call a process-modular design. We

first discuss what such a design is, before delving in the details of ModConc.
Such a design can be applied to the static analysis of concurrent programs that
share a number of commonalities already introduced: the notion of process
as a unit of computation, and interferences between the processes that can
be communicated as communication effects. Possible communication effects
include accesses to shared state, the sending and the receiving of messages,
synchronization across processes, process creation and termination, etc. This
design enables the analysis to overcome two challenging problems in the static
analysis concurrent programs:

1. Dynamic process creation: In both the thread-based and the actor-
based factorial program, the number of processes created is dynamic and
depends on user input. ModConc supports this possibly unbounded
number of processes by mapping an infinite domain of processes to a
finite domain of abstract processes, and by performing intra-process anal-
ysis on each of these abstract processes to infer information about other
processes that are created or otherwise affected through communication.

2. State explosion In both factorial programs, the number of possible
interleavings between the processes is high: multiple processes are
executed concurrently and their execution may interleave in an expo-
nential number of possible ways. This is known as the state explosion
problem in analysis of concurrent programs [94]. Mitigations for this
problem have been studied in the context of model checking, leading to
partial-order reduction techniques [39, 33] which reduce the number of
interleavings a model checker has to explore, rendering it more scalable
and enabling the verification of more complex programs. However,
such techniques do not solve the explosion problem and still expose
exponential behavior in the worst case.
The design of ModConc is inspired by Cousot and Cousot [21] and
does not explicitly model process interleavings in the analysis. These
interleavings are still implicitly accounted for: any communication that

7

occurs between processes will trigger the re-analysis of the affected
process to take it into account. The fact that the interleavings are not
explicitly modeled prevents ModConc analyses of suffering from the
state explosion problem.

To illustrate the difference between a static analysis that explicitly models
process interleavings and a static analysis that follows a process-modular
design, consider a program with two threads, t1 and t2, where each thread is
ready to perform a state transition.

(a) If the operation performed by each transition does not influence the
applicability or the outcome of the transition of the other thread, having
t1 transition first and then only t2 or having t2 transition first and then
only t1 does not influence the result of the program. This is, for
example, the case when both transitions read from, but do not write
to, the contents of a reference. This situation is depicted in Fig. 2a.
In this case there are two persistent sets from the initial state: the
set containing only the transition of t1, and the set containing only
the transition of t2. An analysis may explore only one of the two
interleavings, and still remain sound.

(b) If the transitions do influence each other, then the end result of the
program will depend on the interleaving, and an analysis has to take into
account both interleavings. This is for example the case if t1 modifies
a reference and at the same time t2 accesses the same reference. This
situation is depicted in Fig. 2b. In this case, there is only one persistent
set at the initial state, containing both enabled transitions. This means
that if t1 transitions first, the result of the program may be different
from the result where t2 transitions first. For an analysis to be sound,
it needs to account for both interleavings in its results.

Static analyses that explicitly model interleavings may benefit from re-
duction techniques to explore a single interleaving in the first case, but have
to model both interleavings in the second case due to the interference. In
the general case, reduction techniques do not reduce the worst-case time
complexity of an analysis, which remains exponential.

With a process-modular analysis design inspired from the modular analysis
notion of [21], all interleavings are accounted for through over-approximation,
but all interleavings are not explicitly explored separately. Instead, the

8

t1: (deref x)
t2: (deref x)

t1: 1
t2: (deref x)

t1: (deref x)
t2: 1

t1: 1
t2: 1

(a) Non-interfering processes.

t1: (deref x)
t2: (ref-set! x 2)

t1: 1
t2: (ref-set! x 2)

t1: (deref x)
t2: 2

t1: 1
t2: 2

t1: 2
t2: 2

(b) Interfering processes.

Figure 2: Representation of the concurrent execution of two threads in an all-interleavings
analysis. Each program state represents the current expression evaluated or the value
reached by each thread (written ti : e or ti : v for each thread). Edges represent transitions
performed in the execution of the program.

program is analyzed on a per-process basis. Each process is analyzed in
isolation, and every interleaving of the analyzed process with other processes
is deemed possible. Processes that may conflict need to be analyzed more
than once to account for possible conflicts, hence a process-modular analysis
will iterate over multiple analyses of the set of processes. However, it can be
ensured that the maximal number of iterations does not grow exponentially,
thereby ensuring scalability.

t1: (deref x) t2: (deref x)

t1: 1 t2: 1

(a) Non-interfering threads.

t1: (deref x)

t1: 1 t1: 2

t2: (ref-set! x 2)

t1: 2

(b) Interfering threads.

Figure 3: Representation of the concurrent execution of two threads in a process-modular
analysis. Each node denotes the current expression evaluated by a thread or the value
reached by this thread. Edges represent transitions performed during the analysis of a
thread. Plain edges are transitions explored during the first iteration of a process-modular
analysis, and dashed edges are explored during the second iteration.

We revisit our previous example in the setting of a process-modular
analysis. There are two threads to analyze: t1 and t2, and each thread is

9

analyzed in isolation.

(a) In the case of non-interfering transitions, each thread is analyzed just
as any sequential program, and the complexity of the analysis becomes
the complexity of a sequential analysis multiplied by the number of
threads. This is depicted in Fig. 3a. Note that the interleavings of the
different threads are not explicitly represented, but rather the result
of the analysis is a graph per thread describing the evolution of each
thread separately.

(b) In the case of interfering transitions, a first iteration of the analysis
analyzes each thread in separation until completion. This is depicted by
the plain edges in Fig. 3b. Thread t2 performs an operation conflicting
with thread t1, and therefore thread t1 is analyzed again to account for
the changes that occur from the execution of thread t2. The dashed
transition of Fig. 3b is therefore also explored.

Although this is a very synthetic example, we can already see that the
number of transitions explored is reduced compared to an analysis that
explores all interleavings or to an analysis that performs state space reduction.
Indeed, in the case of the non-interfering threads, an analysis with state space
reduction and a process-modular analysis only need to explore two transitions
instead of the four possible transitions. In the case of interfering processes, an
analysis with state space reduction needs to explore all four transitions, while
a process-modular analysis only explores three transitions. As the number of
processes and the number of transitions grow, this difference in the number
of transitions and the number of states that have to be explored by each
analysis grows as well.

The concept of modular analysis has been formalized by Cousot and Cousot
[21], whoi present a general-purpose method to design modular analyses.
These ideas have been applied in the context of thread-based programs by
using concepts from either assume-guarantee reasoning [31, 44], rely-guarantee
reasoning [71, 73], or separation logic [41], and this in a setting limited to a
statically known number of executed threads. Recent developments [66, 67]
propose process-modular analyses for synchronous message-passing programs,
but again limited to programs composed of a constant set of processes that is
known a priori.

Process-modular analyses may fare very well in terms of scalability [72],
as they are not subject to the state explosion problem. The main challenge

10

compared to existing work is that dynamic creation of processes is inherent
to modern concurrent programs and must be supported by the analysis.

3. The ModConc Approach

Non-modular analyses explicitly explore all possible interleavings of the
transition relation of a concurrent semantics (or a sound subset thereof) to
derive how a concurrent program evolves at every program point. A non-
modular analysis concurrently keeps track of the state of all processes and
may step one of them at any given point. Every interference between two
processes (process creation and interprocess communication) is immediately
effected on the global analysis state.

Analyses resulting from our ModConc approach rely on the same tran-
sition relation as a non-modular analysis, but consist of two cleary distinct
and alternating phases.

1. In the intra-process analysis phase, single processes are analyzed in
isolation until a fixed point is reached. During this phase, all communi-
cation effects are accumulated in a set instead of being applied on the
global analysis state.

2. The inter-process analysis phase uses the effects accumulated during
the intra-process analysis to update the global analysis state and to
launch additional intra-process analyses for processes that were created
or impacted by these state updates.

From this description it is clear that ModConc analyses, like all sound non-
modular analyses, take into account all process creation and communication
that may occur during program execution (no information is “lost”) but, unlike
existing non-modular analyses, do not have to deal with all possible process
interleavings at all program points at which interprocess communication
occurs. It is for this reason that ModConc analyses scale with respect to
process creation and interprocess communication in concurrent programs.

In the remainder of this section we detail ModConc as a step-by-step
design method (Section 3.1) and illustrate how a resulting analysis behaves
on our previously introduced example programs (Section 3.2). We then
discuss important properties of the resulting analyses (Section 3.3) that are
termination, soundness, and complexity. ModConc is applied to threads
and to actors in the remainder of this paper.

11

3.1. Steps to Apply ModConc
The ModConc method for constructing a modular analysis for concurrent

programs consists of the following steps:

1. Specification of an operational semantics for the input language featuring
concurrency, modeled by a transition relation.

2. Modification of the operational semantics into a sequentialized transition
relation annotated with communication effects.

3. Construction of an intra-process analysis that infers communication
effects, based on the sequentialized semantics.

4. Construction of an inter-process analysis that drives intra-process anal-
ysis until no new communication effects are inferred.

3.1.1. Step 1: Operational semantics for the input language
The operational semantics of a concurrent programming language can

be modeled by a transition relation that specifies how the program state
(including the state of its set of processes) evolves in a step-wise fashion. Two
kinds of transitions can be distinguished.

1. Sequential transitions model sequential operations affecting a single
process. In the thread-based and actor-based factorial examples in our
Scheme dialect, sequential constructs modeled by this type of transition
include define, let, +, and if.

2. Concurrent transitions model concurrent operations that affect more
than one process. In our examples, concurrent operations include spawn,
join, create, and send.

3.1.2. Step 2: Sequentializing semantics by delaying effects
The second step consists in constructing a sequentialized version from the

concurrent semantics for a single process. This modified semantics honors
the existing semantics of sequential transitions, but replaces the semantics of
concurrent transitions. Each of these transitions are replaced by a transition
that only acts on the state of the process performing the transition, and
that generates a communication effect describing the effect of applying the
transition on the rest of the program state. The result of this step is an
intra-process transition relation annotated with a set of communication effects,
which is non-empty for concurrent operations.

Examples of communication effects include the process creation effect,
generated upon the creation of a new process and containing the state of the

12

created process; a send communication effect that is generated upon execution
of the send primitive and that contains information about the target process
and the content of the message. We formally define effects for thread-based
and actor-based concurrency in Sections 5 and 6, respectively.

3.1.3. Step 3: Intra-process analysis for inferring communication effects
Computing the fixed point of a process using the sequentialized transition

relation results in an intra-process analysis that infers communication effects.
The intra-process analysis must be parameterized by specific input values for
processes, generally including abstractions of the memory heap (called value
store) and continuation stack (called continuation store). Input values also
include values returned by other threads in multi-threaded programs, and
actor mailboxes in actor programs.

The intra-process analysis explores all possible behaviors of the analyzed
process under the assumptions given by the input values, and infers the
communication effects as well as changes to the value store and continuation
store. To infer communication effects containing values, the analysis needs
to be able to reason over the flow of values in a program. In this paper, we
rely on an analysis for sequential programs in which the analysis steps over
abstract states that over-approximate concrete program states. The result of
stepping through a process is a flow graph that models control and value flow
of that process. The intra-process analysis finishes when no new behavior can
be inferred.

3.1.4. Step 4: Inter-process analysis for driving the intra-process analysis
The inter-process analysis gathers the communication effects inferred

by the intra-process analysis on a set of processes and decides the next set
of processes that require intra-process analysis. This next set of processes
contains newly created processes and processes that depend on the inferred
communication effects. For example, if a thread t1 is joining thread t2, and
the intra-process analysis of thread t2 infers the return value of this process,
which is considered to be a communication effect, then the intra-process
analysis of thread t1 must be performed again to include this information.
Similarly, based on the communication effect inferred by the intra-process
analysis of actor a1 when it sends a message to actor a2, the inter-process
analysis triggers the intra-process analysis of actor a2.

Because a concurrent program starts by executing its main process, the
inter-process analysis starts with an intra-process analysis of the main process.

13

The inter-process analysis is finished when no new communication effects
can be inferred. The resulting inter-process analysis driving the intra-process
analysis is what we refer to in this paper as a modular ModConc analysis.

3.2. Example runs
Consider the thread formulation of our factorial example in Listing 1.

We describe each iteration of the modular analysis on this example, and
depict the abstraction of this example as inferred by ModConc in Fig. 4.
Each iteration consists of one or more intra-process analyses that, except for
the main process in the initial iteration, are scheduled by the inter-process
analysis.

1. The analysis starts with the intra-process analysis of main thread t0.
The intra-process analysis infers that thread t0 creates thread t1 to
evaluate expression (fact-thread 1 n) (line 13), and that t0 joins
on the result of t1 (line 14). Therefore, in this initial iteration, the
intra-process analysis for thread t0 cannot fully analyze this thread as
its behavior depends on the newly created thread t1.

2. In the second iteration thread t1 is analyzed. The intra-process anal-
ysis infers that t1 may terminate with the resulting integer value of
(product from to) (line 3), and that new threads may be created to
evaluate (fact-thread (car bounds) (cdr bounds)) (line 9) after
which they are immediately joined (line 6). For the sake of the example
we assume a single thread t2 may be created (which, in an abstract
analysis setting, may represent multiple concrete threads created at this
point).

3. The third iteration reanalyzes thread t0 as new join information has
been discovered in the previous iteration. No new communication effects
are discovered for t0 in this iteration. This iteration also analyzes t2
because it was created in the previous iteration and, similar to the
effects inferred for t1 in the previous interation, infers termination with
an integer return value and the creation of (again) t2 as effects.

4. The fourth iteration reanalyzes t1 and t2 because new information about
the return value of t2 has been discovered in the previous iteration and
both t1 and t2 join on this abstract process. The analysis of t1 and
t2 again detects integer return values and the creation of t2. Because
all of these effects were already inferred and no new effects have been
discovered, the analysis reaches a fixed point for threads t1 and t2,
completing their analysis.

14

5. The fifth and final iteration reanalyzes thread t0 because it depends
on the result of thread t1 for which new join information (the integer
result value of t1) has been discovered in the previous iteration. No
previously unencountered effects are generated for t0, completing the
analysis of t0 and of the entire program.

t0: e

t1: (fact-thread 1 n)

t2: (fact-thread (car bounds) (cdr bounds))

Figure 4: Abstract representation of the factorial program with threads. Nodes represent
abstract threads, while an edge from node ti to tj indicates that thread ti creates thread
tj . Note that the unbouded chain of fact-thread threads are abstracted to finitely many
abstract threads with a self-reference. e is the program under analysis of Listing 1.

Consider now the actor formulation of the factorial example in Listing 2.
The analysis of this program using ModConc is very similar to that of
the thread-based version: both analyses start analyzing the main process,
which creates an initial process that is then analyzed in the next iteration.
Both analyses terminate once all processes have been analyzed taking in
consideration all communication effects that affect them. The differences
are in the fact that, in the actor variant, messages are used as the means
of communication for actors as opposed to the use of thread joining, and in
the fact that the actor version has an extra process for the master actor, of
which no counterpart is present in the thread version. Other than that, both
analyses execute in a similar way and we do not detail the execution of the
analysis on this second example.

3.3. Theoretical Properties
3.3.1. Termination

In this paper, we specify the intra-process and inter-process analyses
as a fixed-point computation of monotone transfer functions over a finite
state space. Termination of these analyses is therefore ensured by Tarski’s
fixed-point theorem [91].

15

3.3.2. Soundness
An intra-process analysis is sound only if it relies on a sound sequentialized

transition relation that infers communication effects. Soundness of the inter-
process analysis relies on the soundness of the intra-process analysis it drives.
If the intra-process analysis is sound, the set of communication effects inferred
by the analysis of a process is a sound over-approximation of the set of
communication effects that may appear at run time. Using this sound
over-approximation, the inter-process analysis will at least re-trigger the intra-
process analysis of all affected processes. When a fixed point is reached by
the inter-process analysis, all processes have been analyzed with soundly over-
approximated input values, which results in a sound inter-process analysis.

3.3.3. Complexity
A modular analysis designed with our ModConc approach adds a linear

factor (proportional to the total number of abstract communication effects)
to the complexity of its underlying sequential analysis. The analysis time
grows with the number of abstract processes created by the program under
analysis and with other communication effects such as the number of abstract
message sends in actor programs or write operations on shared variables in
thread programs.

The inter-process analysis will at most have to recompute an intra-process
analysis a number of times linear to the number of communication effects. As
the number of abstract processes increases, the running time of the analysis
increases in proportion.

Because the number of types of communication effects is fixed, the com-
plexity of the overall analysis adds a linear factor to the complexity of the
sequential analysis. If the sequential analysis is polynomial, the modular
concurrent analysis remains polynomial—unlike a non-modular analysis which
becomes exponential. As an example, with the AAM formulation used in
this paper—which exhiits a cubic worst-case time complexity—the resulting
ModConc analyses have a worst-case time complexity of O(|Exp|4) where
|Exp| is the number of expression of the program. This because the number
of abstract communication effects is bounded by the number of expressions
in the program under analysis.

3.4. Applications
The information inferred by ModConc analyses includes the possible

running processes, the communication effects they can perform as well an

16

over-approximation of their data-flow and control-flow in the form of flow
graphs, under any possible input and interleaving. This information can serve
as a foundation for building a number of client analyses.

In the domain of program comprehension, information from the communi-
cation effects such as message sends and process creation can be used to derive
communication topology analyses [19, 65] in order to provide information about
the different processes that may execute in a concurrent program, and more
specifically which process creates which other process and how such processes
communicate. This information is directly present in the communication
effects inferred by the analysis.

Also, the over-approximation of the data-flow and control-flow inferred
from the analysis in the form of flow graphs can serve as a foundation to
bootstrap other analyses, which then do not need to extract data- and control-
flow information again as this has already been done by ModConc. This can
serve for applications in the domain of defect detection or program verification.

4. Base Language: λ0

In this work we explore both thread-based (Section 5) and actor-based
concurrency (Section 6) on top of a Scheme-like base language λ0. This base
language is based on the λ-calculus in A-Normal Form [34], underlining the
fact that ModConc readily supports higher-order languages. This restricted
language is chosen to enable focusing on the core principles of ModConc,
while still preserving the challenging aspects of combining higher-order with
concurrent models that feature mutable shared-memory or actors. Features
other than functions and variable bindings (e.g., imperative constructs and
classes) have long been investigated by the related work and are of an orthog-
onal nature to the content of this paper: in the application of ModConc, no
assumption is made about the base language and ModConc is therefore not
limited with respect to these orthogonal features of the base language.

In this section we start by defining the syntax of λ0, and specify its
abstract semantics. For completeness, the concrete semantics of λ0 is defined
in Appendix A, and we highlight here in gray the parts of the abstract
semantics that have undergone changes due to the abstraction.

4.1. Syntax
The syntax of λ0 is defined in Fig. 5. It supports function definition, func-

tion application, and recursive bindings through letrec. Our implementation

17

(see Section 7.1) supports an extended version of this language with more
data types, operations, and language constructs, which brings it closer to
full-fledged Scheme.

λ0

Syntax

e ∈ Exp ::= ae
| (f ae)
| (letrec ((x e1)) e2)

f, ae ∈ AExp ::= x | lam
lam ∈ Lam ::= (λ (x) e)
x, y ∈ Var a finite set of names

Figure 5

4.2. Abstract Semantics
The abstract operational semantics of λ0, defined in Fig. 6, is a non-

deterministic transition relation (̂) : Σ̂ × Ŝtore × K̂Store × P(Êffect) ×
Σ̂× Ŝtore × K̂Store, resulting from abstraction of the transition relation of
the concrete semantics using the AAM approach [50], and mapping from one
process state, store and continuation store to a successor process state, store
and continuation store, and generating one or more effects during this step.

We leave the set of effects undefined at this point as λ0 does not generate
any effect. We use this set of effects when extending λ0 with concurrent
extensions in Sections 5 and 6.

State space. A process state ς̂ is composed of a control component ĉ and a
continuation address k̂. The control dictates whether a state is an evaluation
state (ev) in which an expression is evaluated in a given environment, or a
continuation state (ko) in which a value has been reached. The continuation
address points to the continuation of the computation in the continuation store.
Environments ρ map variables to addresses, value stores σ̂ map addresses to
values, and continuation stores Ξ̂ map continuation addresses to continuations.
A non-empty continuation κ̂ consists of a frame φ̂ and a continuation address
k̂ that points to the next continuation in the continuation store. The continu-
ations threaded through the continuation store form a continuation stack in
a way that is suited for abstraction [50]. Language λ0 only requires a single
type of continuation frame, letrec(e, â, ρ̂), for evaluating letrec expressions,

18

λ0

Abstract state space

ς̂ ∈ Σ̂ = Ĉontrol × K̂Addr

ĉ ∈ Ĉontrol ::= ev(e, ρ̂)
| ko(v̂)

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂al)

Ξ̂ ∈ K̂Store = K̂Addr ⇀ P(K̂ont)

κ̂ ∈ K̂ont ::= φ̂ : k̂ | ε

φ̂ ∈ Φ̂ ::= letrec(e, â, ρ̂)

v̂ ∈ V̂al ::= clo(lam, ρ̂)

â ∈ Âddr a finite set of addresses

k̂ ∈ K̂Addr a finite set of addresses

Abstract transition relation

ρ̂, σ̂ ` ae ⇓̂ v̂

〈ev(ae, ρ̂), k̂〉, σ̂, Ξ̂ ̂ 〈ko(v̂), k̂〉, σ̂, Ξ̂
Atomic

ρ̂, σ̂ ` f ⇓̂ clo((λ (x) e), ρ̂′) ρ̂, σ̂ ` ae ⇓̂ v̂ â = âlloc(x, σ̂)

〈ev((f ae), ρ̂), k̂〉, σ̂, Ξ̂ ̂ 〈ev(e, ρ̂′[x 7→ â]), k̂〉, σ̂ t [â 7→ {v̂}], Ξ̂
App

â = âlloc(x, σ̂) k̂′ = k̂alloc(e2, ρ̂, σ̂, Ξ̂) ρ̂′ = ρ̂[x 7→ â]

〈ev((letrec ((x e1)) e2), ρ̂), k̂〉, σ̂, Ξ̂ ̂

〈ev(e1, ρ̂′), k̂′〉, σ̂, Ξ̂ t [k̂′ 7→
{

letrec(e2, â, ρ̂′) : k̂
}

]

Letrec1

Ξ̂(k̂) 3 letrec(e, â, ρ̂) : k̂′

〈ko(v̂), k̂〉, σ̂, Ξ̂ ̂ 〈ev(e, ρ̂), k̂′〉, σ̂ t [â 7→ {v̂}], Ξ̂
Letrec2

Atomic evaluation ρ̂, σ̂ ` ae ⇓̂ v̂

v̂ ∈ σ̂(ρ̂(x))

ρ̂, σ̂ ` x ⇓̂ v̂
Var

ρ̂, σ̂ ` lam ⇓̂ clo(lam, ρ̂)
Lambda

Figure 6: Abstract state space and abstract semantics of λ0.

19

where e is the body expression, â is the address of the newly bound variable
being evaluated, and ρ̂ is the binding environment. Closures (clo) are values
that pair a lambda expression with a binding environment.

Due to the abstraction, the set of addresses Âddr and K̂Addr are finite,
as they are the only sources of infiniteness in the concrete state space. The
propagation of these changes through the state space has as effect that the
value store may map a single address to more than one value, and the fact that
a continuation store may map a single address to more than one continuation.

Transition relation. The transition relation encodes the common call-by-
value λ-calculus semantics. Rule Atomic evaluates an atomic expression
using atomic evaluation. Rule App evaluates a function application by
atomically evaluating the operator and its operand, and stepping into the
resulting function body with an extended environment and value store in
which parameters are bound to their corresponding argument values. Rules
Letrec1 and Letrec2 encode the semantics of letrec. First a new address
is allocated for the bound variable. The evaluation then steps into the
expression computing the value of this variable, pushing a frame on top of
the continuation stack. When the bound value has been evaluated, the store
is extended to incorporate it and evaluation continues with the body of the
letrec. To maintain soundness under the abstraction, updates to the store
are modeled as store joins (σ̂ t [â 7→ {v̂}]1).

Atomic evaluation. To evaluate of a variable reference, the variable’s address
in the environment and its value in the store (rule Var). Note that more
than one value may reside at the same address in the store due to abstraction.
Atomic evaluation of a lambda expression returns a closure that pairs the
lambda expression with the current binding environment (clo).

Address allocation. As part of the abstraction, the domains of addresses
Âddr and K̂Addr have been rendered finite, but we have not yet defined
these domains. We provide here an instanciation of these domains of the
corresponding allocation functions which create elements of these domains.
The allocation strategy used here results in a context-insensitive analysis.
The use of a widening of the store into a global store in our implementation
further results in a flow-insensitive analysis.

1The t operator is defined here as ∀x, (σ̂1 t σ̂2)(x) = σ̂1(x) ∪ σ̂2(x).

20

λ0

Allocation

â ∈ Âddr = Exp

k̂ ∈ K̂Addr = Exp × Ênv

âlloc(e, σ̂) = e

k̂alloc(e, ρ̂, σ̂, Ξ̂) = (e, ρ̂)

Analyzing a λ0 program. In order to analyze a λ0 program, we need to explore
all process states that are reachable according to the transition relation. This
can be expressed as the fixed point of the following transfer function, i.e.,
lfp(F e) is an over-approximation of the set of all reachable states of program
e.

λ0

Transfer function

F̂e(S) = S ∪
{
(〈ev(e, []), k̂0〉, [], [k̂0 7→ {ε}])

}
∪

⋃
(ς̂,σ̂,Ξ̂)∈S

ς̂,σ̂,Ξ̂ ̂ ς̂′,σ̂′,Ξ̂′

(ς̂ ′, σ̂′, Ξ̂′)

5. Shared-Memory Concurrency with Threads: λτ

We now add support for shared-memory concurrency to the base language
λ0 defined in the previous section by adding three new concepts.

1. Thread creation and joining. Threads can be created to compute a
value in a different process, and a thread can join another thread to
obtain the final value of the computation performed by that other thread.
Thread joining is a blocking operation and is a form of synchronization.
Note that the notion of thread joining (one thread blocking until another
thread finishes its execution) is not to be confused with the notion of
store joining used in the semantics (when the information contained in
two stores at the same address is merged).

2. Mutable references. Thread-based programs usually share mutable
state, but λ0 is free of side-effects. We therefore introduce references
into the language, which hold a value that can be read or modified by
any thread.

21

3. Locks. Race conditions may be caused by two concurrent threads that
access a reference. We therefore introduce locks for developers to model
critical sections in concurrent programs to avoid these race conditions.
The language is extended with locks as they are a semantically simple
form of synchronization, but other forms of synchronization could be
considered as well (e.g., synchronized variables and methods).

5.1. Syntax of λτ

The language λ0 extended by the three aforementioned features results in
the thread-based concurrent higher-order language λτ , of which the syntax
is given in Fig. 7. We refer back to Listing 1 for a program written in an
extended version of λτ supported by our implementation.

λτ

Syntax

e ∈ Exp ::= . . .

| (spawn e) | (join ae)
| (ref ae) | (deref ae) | (ref-set ae ae)
| (new-lock) | (acquire ae) | (release ae)

Figure 7: Syntax of the thread-based concurrent higher-order language λτ .

The spawn construct takes as argument an expression to evaluate in a new
thread and returns a process identifier that identifies the newly created thread.
When a thread finishes its execution, the result of its evaluated expression
serves as the return value of that thread. A thread can join another thread,
blocking the former until the latter finishes its execution and returns a value.

Values can be wrapped into a reference through the ref primitive. The
deref primitive reads the content of a reference, and ref-set updates the
content of a reference to a new value.

The new-lock primitive creates a new lock that can be used to protect
critical regions. A lock is acquired through the acquire primitive and released
through the release primitive. A lock acquired by a process can only be
released by the same process. If a process tries to acquire a lock that is held
by another process, the call to acquire blocks until the lock is released.

22

5.2. Abstract Semantics of λτ

We extend the state space and transition relation of λ0 to account for
the concurrent features of λτ in three steps: we add thread management
primitives, references, and locks. Note that the transition relation here works
on the level of a single process, and is annotated with effects to describe
the concurrent operations that should be performed on the global state. We
discuss the interleavings in the execution of multiple processes later in this
section. Also, the local-thread state is not explicit: everything resides in a
single store, shared among all processes. Processes have access only to the
portion of the store that is visible in the environment ρ̂ in which they are
executed, and this include state that is shared among multiple threads as well
as thread-local state.

Similarly as for λ0, we directly introduce the abstract semantics and
highlight the differences with the concrete semantics in gray. The full concrete
semantics is available in Appendix A.

Thread management. Process identifiers are first-class values as they are
returned by spawn and passed along to join to manage threads (Fig. 8). Just
like addresses, we leave process identifiers unspecified, but a natural number
formulation can be used in a concrete setting. Creating a thread with spawn
generates a create communication effect denoted by c(p̂, ς̂), where p̂ is the
process identifier and ς̂ is the initial state of the created thread (rule Spawn).
Joining on a thread generates a join communication effect denoted by j(p̂, v),
where p̂ is the process identifier of the thread which is joined and v is the
return value of this thread.

References. We add first-class references as values to the language (Fig. 9)
to support mutability. A reference ref(â) contains an address a which is
associated to a value in the store. Creating a reference allocates a new address
and returns a reference bound to that address (rule Ref). Reading from a
reference ref(â) returns the value in the store at address â and generates a read
communication effect w(â) (rule Deref). Writing to a reference changes the
value in the store at the address â contained in the reference, and generates a
write communication effect r(â).

Locks. First-class locks are added as values (Fig. 10) in a similar way as with
references. A lock is formally represented as lock(â), where â is an address
in the value store that either points to unlocked if the lock is unlocked, or
to locked(p̂) if the lock is held by process p̂. Creating a new lock allocates

23

λτ

Abstract state space

v̂ ∈ V̂al ::= . . . | pid(p̂)

p̂ ∈ P̂ID a finite set of process identifiers

Effects
êff ∈ Êffect ::= c(p̂, ς̂) | j(p̂, v̂)

Transition relation

〈ev((spawn e), ρ̂), k̂〉, σ̂, Ξ̂ c(ˆ̂p,〈ev(e, ˆ̂ρ),ˆ̂k0〉) 〈ko(pid(p̂)), k̂〉, σ̂, Ξ̂
Spawn

ρ̂, σ̂ ` ae ⇓̂ pid(p̂)

〈ev((join ae), ρ̂), k̂〉, σ̂, Ξ̂ j(p̂,v̂) 〈ko(v̂), k̂〉, σ̂, Ξ̂
Join

Figure 8: Abstract semantics of thread management in the λτ language.

an address in the store and associates it to unlocked (rule NewLock).
Acquiring a lock requires the lock to be unlocked and sets it to a locked(p̂)
value, generating an acq(p̂, â) effect (rule Acquire). Releasing a lock requires
the lock to be locked by the same process p̂ and changes its value to unlocked,
generating effect rel(p̂, â) (rule Release).

Process allocation. Figure 11 depicts the abstract allocation strategy for
threads, where a process identifier is abstracted by the expression it evaluates.
This allocation strategy results in an analysis where abstract process identifiers
are not sensitive to the history of the program under analysis. The abstract
process allocation function therefore simply extracts the expressions being
evaluated by the process.

5.3. Non-Modular Analysis of λτ

In order to perform a non-modular analysis of λτ programs, one can define
a transition relation that acts not on program states, but rather on process
states: (⇒̂ p̂) : Π̂× Ŝtore × K̂Store × Π̂× Ŝtore × K̂Store, which we provide
in Appendix B. This transition relation performs a step on a process p̂ in
a process map π̂ ∈ Π̂, which are mappings fom process identifiers to their

24

λτ

Abstract state space
v̂ ∈ V̂al ::= . . . | ref(â)

Effects
êff ∈ Êffect ::= . . . | r(â) | w(â)

Transition relation

â = âlloc(ae, σ̂) ρ̂, σ̂ ` ae ⇓̂ v̂

〈ev((ref ae), ρ̂), k̂〉, σ̂, Ξ̂ ̂ 〈ko(ref(â)), k̂〉, σ̂ t [â 7→ {v̂}], Ξ̂
Ref

ρ̂, σ̂ ` ae ⇓̂ ref(â) v̂ ∈ σ̂(â)

〈ev((deref ae), ρ̂), k̂〉, σ̂, Ξ̂ r(â) 〈ko(v̂), k̂〉, σ̂, Ξ̂
Deref

ρ̂, σ̂ ` ae ⇓̂ ref(â) ρ̂, σ̂ ` ae′ ⇓̂ v̂

〈ev((ref-set ae ae′), ρ̂), k̂〉, σ̂, Ξ̂ w(â) 〈ko(v̂), k̂〉, σ̂ t [â 7→ {v̂}], Ξ̂
RefSet

Figure 9: Abstract semantics of references in the λτ language.

corresponding process states. From this transition relation, we can then define
a transfer function similarly as for λ0, with the addition that the process
that performs the step is non-deterministically picked. The fixed point of
this transfer function, lfp(F̂ e) over-approximates all reachable program states
under all possible process interleavings.

5.4. Applying ModConc to λτ

Instead of performing a non-modular, all-interleavings analysis, we instan-
tiate ModConc to λτ programs. The first two steps of the application of
ModConc consists in defining the semantics of the language under analysis
and an abstract and sequentialized version of this semantics, which is what
we have so far.

Intra-process analysis. The third step of ModConc is to define the intra-
process analysis, which fully explores one thread in our case, given a number
of assumptions. This intra-process analysis, defined in Fig. 13 along with its
state space, is parameterized by the following values:

• The process identifier of the process under analysis: p̂,

25

λτ

Abstract state space

v̂ ∈ V̂al ::= . . . | lock(â) | locked(p̂) | unlocked

Effects
êff ∈ Êffect ::= . . . | acq(p̂, â) | rel(p̂, â)

Transition relation

â = âlloc((new-lock), σ̂)

〈ev((new-lock), ρ̂), k̂〉, σ̂, Ξ̂ ̂
〈ko(lock(â)), k̂〉, σ̂ t [â 7→ {unlocked}], Ξ̂

NewLock

ρ̂, σ̂ ` ae ⇓̂ lock(â) σ̂(â) 3 unlocked

〈ev((acquire ae), ρ̂)〉, k̂, σ̂, Ξ̂ acq(p̂,â)

〈ko(lock(â)), k̂〉, σ̂ t [â 7→ {locked(p̂)}], Ξ̂

Acquire

ρ̂, σ̂ ` ae ⇓̂ lock(â) σ̂(â) 3 locked(p̂)

〈ev((release ae), ρ̂), k̂〉, σ̂, Ξ̂ rel(p̂,â)

〈ko(lock(â)), k̂〉, σ̂ t [â 7→ {unlocked}], Ξ̂

Release

Figure 10: Abstract semantics of locks in the λτ language.

• The initial process state of the process under analysis: ς̂0,

• Over-approximations of the value store and continuation store when
this process is executed: σ̂0 and Ξ̂0,

• A thread-join store, which contains return values of other threads: Ĵ .

The state space of the analysis consists of the set of reachable process
states (S), the value and continuation stores (σ̂ and Ξ̂)), and the sets related
to effects. The latter comprise the set of created processes (C), the set of
processes on which a process may join (in the thread join sense) (P), and the
set of addresses on which a process depends (A). This last set corresponds to
addresses that are read from or written to, or locks that are accessed.

The transfer function operates as follows with respect to generated effects
and effect sets:

26

λτ

Process identifier allocation

p̂ ∈ P̂ID = Exp p̂alloc(ev(e,_),_) = e

Figure 11: Allocation of process identifiers in λτ .

λτ

Non-modular transfer function

F̂e(S) =
{
([main 7→ 〈ev(e, []), k̂0〉], [], [k̂0 7→ ε])

}
∪
{
(π̂′, σ̂′, Ξ̂′) | (π̂, σ̂, Ξ̂) ∈ S ∧ p̂ ∈ dom(π̂) ∧ π̂, σ̂, Ξ̂ ⇒̂ p̂ π̂′, σ̂′, Ξ̂′

}
Figure 12: Transfer function for non-modular analysis of λτ .

1. The initial state of the process, with the corresponding stores, is visited.
2. Effect-less transitions are trivially taken and generate no communication

effects.
3. Transitions that create a process add an element to the set of created

processes.
4. Transitions that join on another process p̂′ add the dependency on

process identifier p̂′ to the corresponding set.
5. Other transitions that read from a reference, write to a reference, acquire

a lock, or release a lock at a specific address register the address accessed
as a dependency in the corresponding set of addresses. In the case of
locks, the value of p̂ inside the communication effect must correspond
to the current process identifier.

Inter-process analysis. The inter-process transfer function uses a process
map π̂ ∈ Π̂ = P̂ID → (̂IntraState × Σ̂) that maps every process identifier to
the most recent intra-process analysis state and to the initial state of the
corresponding process. This transfer function relies on the following functions
defined in Fig. 14.

• explore : Π̂× P̂ID × Σ̂× Ŝtore × K̂Store × ĴStore → Π̂× Ŝtore × K̂Store × ĴStore
requires the current process map π̂ and performs an intra-process anal-

27

λτ

Intra-process state space

̂IntraState = P(Σ̂)× Ŝtore × K̂Store

× P(Created)× P(P̂ID)× P(Âddr)

Created = P̂ID × Σ̂

Intra-process transfer function

F̂ p̂,ς̂0,σ̂0,Ξ̂0,Ĵ(〈S, σ̂, Ξ̂, C, P,A〉) = 〈{ς̂} , σ̂0, Ξ̂0,∅,∅,∅〉 (1)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂ ̂ ς̂′,σ̂′,Ξ̂′

〈{ς̂ ′} , σ̂′, Ξ̂′,∅,∅,∅〉 (2)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂
c(p̂′,ς̂2)

ς̂′,σ̂′,Ξ̂′

p̂′=p̂alloc(ς̂2)

〈{ς̂ ′} , σ̂′, Ξ̂′, {(p̂′, ς̂2)} ,∅,∅〉 (3)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂
j(p̂′,v̂)

ς̂′,σ̂′,Ξ̂′

v̂∈Ĵ(p̂′)

〈{ς̂ ′} , σ̂′, Ξ̂′,∅, {p̂′} ,∅〉 (4)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂
êff

ς̂′,σ̂′,Ξ̂′

êff∈{w(â),r(â),acq(p̂,â),rel(p̂,â)}

〈{ς̂ ′} , σ̂′, Ξ̂′,∅,∅, {â}〉 (5)

Figure 13: Transfer function for the intra-process analysis for λτ .

28

ysis on the actor with the process identifier p̂, initial state ς̂, using the
value store σ̂, the continuation store Ξ̂ and the join store Ĵ . It returns
a process map, a value store, a continuation store and a join store
containing the information resulting from the intra-process analysis.

• created : Π̂ → P(P̂ID × Σ̂) returns the set of all created threads inferred
by the intra-process analyses, described by their process identifier and
initial thread state.

• joins : Π̂× ĴStore → P(P̂ID × Σ̂) returns the set of threads (described
as a pair of process identifier and initial thread state) that join a thread
for which the return value has been inferred and stored in the join store
Ĵ .

• conflicts : Π̂ → P(P̂ID × Σ̂) returns the set of threads (described as a
pair of process identifier and initial thread state) that may be in conflict
with other threads because they access the same reference or lock.

λτ

explore(π̂, p̂, ς̂ , σ̂, Ξ̂, Ĵ) = 〈[p̂ 7→ (s, ς̂)], σ̂′, Ξ̂′, Ĵ ′〉

where s = lfp(F̂p̂,ς̂,σ̂,Ξ̂,Ĵ)

and (_, σ̂′, Ξ̂′,_,_,_) = s

and Ĵ ′ =
⊔

p̂∈dom(π̂)
π̂(p̂)=((S,_,_,_,_,_,_),_)

〈ko(v),k̂0〉∈S

[p̂ 7→ {v}]

conflicts(π̂) =
⋃

p̂,p̂′∈dom(π̂)
π̂(p̂)=((_,_,_,_,_,A),ς̂)

π̂(p̂′)=((_,_,_,_,_,A′),ς̂′)
A∩A′ 6=∅

{(p̂, ς̂), (p̂′, ς̂ ′)}

joins(π̂, Ĵ) =
⋃

p̂∈dom(π̂)
π̂(p̂)=((_,_,_,_,P,_),ς̂)

∃p̂′∈P,Ĵ(p̂) 6=∅

(p̂, ς̂)

created(π̂) =
⋃

p̂∈dom(π̂)
π̂(p̂)=((_,_,_,C,_,_,_),_)

C

Figure 14: Auxiliary functions used by the inter-process transfer function for λτ .

Figure 15 depicts the inter-process transfer function
Ĝe : Π̂× Ŝtore × K̂Store × ĴStore → Π̂× Ŝtore × K̂Store × ĴStore. This
transfer function performs the following operations.

29

1. The main thread is analyzed by the intra-process analysis.
2. Each newly-created thread discovered by a previous intra-process anal-

ysis (as extracted by the created function) is analyzed.
3. Each thread that joins another thread for which a previous intra-process

analysis has inferred a return value (as extracted by the joins function)
is reconsidered for analysis to account for the possibly new inferred
return values.

4. Each thread that accesses a memory address that is part of the set
of conflicting addresses between different threads (as extracted by the
conflicts function) is reconsidered for analysis to account for a possible
change in value at the conflicting address.

The inter-process analysis of a λτ program e is then the computation of
the fixed point of this transfer function, lfp(Ĝe), and results in an over-
approximation of the set of all reachable thread states contained in a process
map, as well as an over-approximation of the value store and continuation
store.

λτ

Ĝe(〈π̂, σ̂, Ξ̂, Ĵ〉) = explore([], p̂0, 〈ev(e, []), k̂0〉, σ̂, Ξ̂, Ĵ) (1)

t
⊔

(p̂,ς̂)∈created(π̂)

explore(π̂, p̂, ς̂ , σ̂, Ξ̂, Ĵ) (2)

t
⊔

(p̂,ς̂)∈joins(π̂,J)

explore(π̂, p̂, ς̂ , σ̂, Ξ̂, Ĵ) (3)

t
⊔

(p̂,ς̂)∈conflicts(π̂)

explore(π̂, p̂, ς̂ , σ̂, Ξ̂, Ĵ) (4)

Figure 15: Inter-process transfer function for λτ .

Soundness of this analysis follows from the argument given in Section 3.3.2.
The inter-process analysis adds a linear factor, proportional to the number of
abstract processes created, the number of join operations performed, and the
number of addresses accessed (for locks and references), to the complexity of
the intra-process analysis. When the intra-process analysis is polynomial, as

30

is the case for the intra-process analysis defined here, the modular analysis
retains a polynomial complexity.

6. Actor-Based Concurrency

In this section we add support for actors to the base language λ0 from
Section 4 and then show how ModConc can be applied to this extended
language. We present this on a higher-level, as most of the developments are
similar to the ones made for λτ in the previous section. We add two new
concepts to λ0.

1. Actor definition, creation, and evolution. Actors can be created by
instantiating some defined actor behavior, resulting in the creation
of a new process. Actors are associated with state variables, which
characterize the state of the actor. An actor can update its behavior by
becoming a behavior with updated state variables.

2. Messages. Actors can send messages to and receive messages from
other actors. Message handling is central to the concept of actors and
therefore each actor is defined with message handlers for each type of
message the actor may receive. A message is associated with a tag
to indicate its type, which is used to select the appropriate message
handler in the receiving actor. Messages can contain any number of
values of any type.

6.1. Actor Language: λα

Extending the base language λ0 with actors and messages results in
the actor-based concurrent higher-order language λα, of which the syntax
extensions are given in Fig. 16. The factorial definition in Listing 2 is an
example of a program written in an extended version of λα.

The actor primitive defines an actor behavior, associating the types of
messages the behavior can receive with a corresponding message processing
body. Primitive create spawns a new actor from a given behavior and returns
its process identifier, while become changes the behavior of the current actor.
Primitive send sends a message to a specific actor identified by its process
identifier. Messages exchanged between actors consist of a tag t (a simple
name) and an argument. Like variable names, tags are syntactic elements of
which there are a finite number within a program.

31

λα

Syntax

e ∈ Exp ::= . . .

| (create ae ae)
| (send ae t ae)
| (become ae ae)

ae ∈ AExp ::= . . . | act
act ∈ Act ::= (actor (x)

(t (y) e)∗)

Syntactic functions

var((actor (x) . . .)) = x

handler((actor (x) . . . (t (y) e) . . .), t) = (y, e)

Figure 16: Syntax of the actor-based concurrent higher-order λα language.

To simplify the presentation, but without loss of generality, λα is limited
to actors and message handlers with one argument. Our implementation,
described in Section 7.1, supports an arbitrary number of arguments.

6.2. Abstract Semantics of λα

The abstract semantics of λα is defined in a similar manner as for λτ . We
provide the full abstract semantics in Fig. 17 and highlight here the differences
and similarities with the semantics of λτ .

State space. Actor definitions are first-class values (actdef) in the language,
whereas threads have no definitions as they are simply defined by their
expressions e. A process state (ς̂) has the usual control component ĉ and
continuation address k̂, but has one more component: the current behavior b̂
of the actor. An actor can have as behavior either an actor definition coupled
to its extended definition environment (act), or the behavior of the main actor
(main). Compared to λ0 and λτ , the control component has an additional
possible value: an actor can be waiting for a message.

Actors can generate three kinds of communication effects. Creating a new
actor generates a create effect c(p̂, ς̂), stating that an actor with initial state
ς̂ and process identifier p̂ is created. This effect is identical to the one for λτ .
The other effects differ: actors have no shared states nor locks, but rather
communicate by exchanging messages. An actor can therefore send a message
with tag t and argument v̂ to an actor with process identifier p̂, generating

32

communication effect snd(p̂, t, v̂), and an actor receiving a message with tag
t and argument v̂ generates rcv(t, v̂) as communication effect.

Transition relation. Atomic evaluation is extended to support actor definitions.
Evaluating an actor definition yields an actordef value that pairs the definition
with the binding environment (rule Actor).

To create an actor, the behavior and arguments given to create are
evaluated and a create communication effect is generated containing the state
of the new actor, initially waiting for messages. The creating actor then
reaches the process identifier of the created actor as value (rule Create).
An actor can change its behavior through a become statement that binds the
new value of its argument to the given value and sets the actor to a wait
state (rule Become).

Sending a message requires evaluating the first argument to the process
identifier of the receiving actor, evaluating the message argument, and gen-
erating the corresponding communication effect (rule Send). Receiving a
message depends on a rcv communication effect, and requires extracting
the handler corresponding to the tag of the received message, binding the
handler parameter to the received value, and evaluating the handler body
(rule Receive).

Just as for λτ , we propose in Fig. 18 an allocation strategy that doesn’t
preserve process history information: an abstract process identifier of an actor
is the syntactic behavior definition with which this actor has been spawned.

6.3. Modular Analysis of λα

We skip the description of non-modular analysis of λα as it is similar to
the one of λτ , and instead focus on highlighting the similarities and differences
in the modular analysis of λα with respect to the one of λτ .

Intra-process analysis. The intra-process analysis of λα is similar to the one of
λτ : it explores every process state reachable from the transition relation, and
store the impact of communication effects in sets that are used by the inter-
process analysis. As for λτ , the set of processes created by the process under
analysis is computed (C). The only other set needed is the set of messages
sent to other actors (M). The intra-process analysis transfer function is
provided in Fig. 19, and performs the following operations.

1. The initial state and stores are part of the intra-process analysis state.
The initial sets of created processes and sent messages are empty.

33

λα

Abstract state space

ς̂ ∈ Σ̂ = Ĉontrol × B̂eh × K̂Addr

ĉ ∈ Ĉontrol ::= . . . | wait

v̂ ∈ V̂al ::= . . . | actdef(act, ρ̂)

b̂ ∈ B̂eh ::= act(act, ρ̂) | main

p̂ ∈ P̂ID a finite set of process identifiers

Effects
êff ∈ Êffect ::= c(p̂, ς̂) | snd(p̂, t, v) | rcv(t, v)

Atomic evaluation

ρ̂, σ̂ ` act ⇓̂ actdef(act, ρ̂)
Actor

Transition relation

ρ̂, σ̂ ` ae ⇓̂ act(act, ρ̂′)
ρ̂, σ̂ ` ae′ ⇓̂ v̂ â = âlloc(x, σ̂) x = var(act)

〈ev((create ae ae′), ρ̂), b̂, k̂〉, σ̂, Ξ̂ c(p̂,〈wait,act(act,ρ̂′[x7→â]),k̂0〉)

〈ko(pid(p̂)), b̂, k̂〉, σ̂ t [â 7→ {v̂}], Ξ̂

Create

â = âlloc(x, σ̂) ρ̂, σ̂ ` ae ⇓̂ actdef(act, ρ̂′)
ρ̂, σ̂ ` ae′ ⇓̂ v̂ b̂ = act(act, ρ̂′[x 7→ â]) x = var(act)

〈ev((become ae ae′), ρ̂), b̂, k̂〉, σ̂, Ξ̂ ̂ 〈wait, b̂′, k̂〉, σ̂ t [â 7→ {v̂}], Ξ̂
Become

ρ̂, σ̂ ` ae ⇓̂ pid(p̂) ρ̂, σ̂ ` ae′ ⇓̂ v̂

〈ev((send ae t ae′), ρ̂), b̂, k̂〉, σ̂, Ξ̂ snd(p̂,t,v̂) 〈ko(v̂), b̂, k̂〉, σ̂, Ξ̂
Send

â = âlloc(y, σ̂) (y, e) = handler(act, t)

〈wait, act(act, ρ̂), k̂〉, σ̂, Ξ̂ rcv(t,v̂)

〈ev(e, ρ̂[y 7→ â]), act(act, ρ̂), k̂〉, σ̂ t [â 7→ {v̂}], Ξ̂

Receive

Figure 17: Abstract semantics of the λα language.

34

λα

Allocation
p̂ ∈ P̂ID = B̂eh p̂alloc(〈_, b̂,_〉,_) = b̂

Figure 18: Abstract allocation strategy for the λα language.

2. Effect-less transitions are taken without generating any communication
effect.

3. Transitions that process a message or change the behavior of the actor
are taken without adding information to the set of created actors and
messages sent.

4. Transitions that create a process add an element to the set of created
processes.

5. Transitions that receive a message extract the message content from
the mailbox.

Inter-process analysis. The inter-process analysis for λα, as for the one for
λτ , operates on a process map. A difference lies in the fact that this process
map also contains an abstract mailbox for each actor: π ∈ Π = PID →
(̂IntraState × Σ× Mbox).

The transfer function relies on the following auxiliary functions, defined
in Fig. 20, and which works is similar ways as the auxiliary function for λτ .

• explore : P̂ID × Σ̂× M̂box × Ŝtore × K̂Store → Π̂× Ŝtore × K̂Store per-
forms an intra-process analysis on the actor with the process identifier
p̂, initial state ς̂, mailbox m̂b, using value store σ̂ and continuation
store Ξ. It returns a process map, value store and continuation store
containing the information resulting from the intra-process analysis.

• created : Π̂ → P(P̂ID × Σ̂) returns the set of all created actors com-
puted by the analysis, described by their process identifier and their
initial actor state.

• sent : Π̂× P̂ID → P(M̂essage) returns the set of messages sent to actor
with process identifier p̂.

35

λα

Intra-process analysis state space

̂IntraState = P(Σ̂)× Ŝtore × K̂Store
× P(Created)× P(Sent)

Created = P̂ID × Σ̂

Sent = P̂ID × M̂essage

Intra-process analysis transfer function

F̂
p̂,ς̂0,σ̂0,Ξ̂0,m̂b(〈S, σ̂, Ξ̂, C,M〉) = 〈{ς̂0} , σ̂0, Ξ̂0,∅,∅〉 (1)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂ ̂ ς̂′,σ̂′,Ξ̂′

〈{ς̂ ′} , σ̂′, Ξ̂′,∅,∅〉 (2)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂
êff

ς̂′,σ̂′,Ξ̂′

(êff=b(b̂,v̂))∨(êff=rcv(t,v̂)∧ (t,v̂)∈m̂b)

〈{ς̂ ′} , σ̂′, Ξ̂′,∅,∅〉 (3)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂
c(p̂′,ς̂2)

ς̂′,σ̂′,Ξ̂′

〈{ς̂ ′} , σ̂′, Ξ̂′, {(p̂′, ς̂2)} ,∅〉 (4)

t
⊔
ς̂∈S

ς̂,σ̂,Ξ̂
snd(p̂′,t,v̂)

ς̂′,σ̂′,Ξ̂′

〈{ς̂ ′} , σ̂′, Ξ̂′,∅, {(p̂′, (t, v̂))}〉 (5)

Figure 19: Transfer function for the intra-process analysis for λα.

36

λα

explore(p̂, ς̂ , m̂b, σ̂, Ξ̂) = 〈[p̂ 7→ (s, ς̂, m̂b)], σ̂′, Ξ̂′〉

where s = lfp(F̂
p̂,ς̂,σ̂,Ξ̂,m̂b) and (_, σ̂′, Ξ̂′,_,_) = s

created(π̂) =
⋃

p̂∈dom(π̂)
π̂(p̂)=((_,_,_,C,_),_,_)

C sent(π̂, p̂) =
⋃

p̂∈dom(π̂)
π̂(p̂)=((_,_,_,_,M),_,_)

(p̂,m̂)∈M

{m̂}

Figure 20: Auxiliary functions used in the inter-process analysis for λα.

Finally, the inter-process analysis for λα explores all processes based on
the information inferred from previous intra-process analysis, in a similar way
as for λτ . It is depicted in Fig. 21.

1. The main process has an empty mailbox and is analyzed with the
intra-process analysis.

2. Each process to which a message is sent—as extracted from the results
of previous intra-process analyses by the sent function—is re-analyzed
with an updated mailbox.

3. Each process that has been created—as extracted from the result of
previous intra-process analyses by the created function—is analyzed,
starting with an empty mailbox.

As for λτ , the result of running the inter-process analysis is a process map
that maps each abstract process to its set of reachable process states, and its
set of generated effects. In addition, an over-approximation of the mailbox of
each actor is also computed.

The soundness and complexity of the modular analysis for λα follow in the
same way as they do for λτ : the soundness of the inter-process analysis follows
from the soundness argument given in Section 3.3.2, and the analysis remains
polynomial, where the number of abstract processes created and abstract
messages sent add a linear factor to the complexity of the intra-process
analysis.

37

λα

Ĝe(〈π̂, σ̂, Ξ̂〉) = explore(p̂0, 〈ev(e, []),main(e), k̂0〉,∅, σ̂, Ξ̂) (1)

t
⊔

π̂(p̂)=(_,ς̂,m̂b)
m̂b′

=m̂b∪sent(π̂,p̂)

explore(p̂, ς̂ , m̂b
′
, σ̂, Ξ̂) (2)

t
⊔

(p̂,ς̂)∈created(π̂)

explore(p̂, ς̂ ,∅, σ̂, Ξ̂) (3)

Figure 21: Inter-process analysis transfer function for λα.

7. Empirical Validation

We applied the modular analyses described in this paper to a number
of benchmark programs to compute flow graphs over-approximating the
behavior of concurrent programs written in λτ and λα, and to deduce the
communication effects that may be generated by each process. We performed
a number of experiments on our implementation of the analyses and their
result.

7.1. Implementation
We applied ModConc to both the thread-based language λτ and the

actor-based language λα. We employed the Scala-AM static analysis frame-
work [90, 88] to implement support for these languages and their analyses.
We made this implementation available through a replication package2. The
base Scheme language supported by Scala-AM goes beyond λ0, being a
large subset of R5RS Scheme [2] with support for lists, cons cells, vectors,
and around 100 standard Scheme primitives and other Scheme constructs
such as named lets, do-notation, etc.

Our implementation also contains an optimized non-modular analysis of
both λτ and λα. The non-modular analysis and the modular ModConc

2Available at https://github.com/acieroid/scala-am/tree/modularthreads for
the thread-based language, and at https://github.com/acieroid/scala-am/tree/
modularactors for the actor-based language.

38

analyses share the same code base, and we applied a number of common
optimizations in their implementation. The optimizations applied to the
non-modular analyses are essential to improve their scalability in order to
support more than a handful of benchmarks, while the optimization applied
to the modular analyses is a common application of general knowledge about
fixed points. Altogether, this shared code base and optimizations ensure that
when comparing non-modular and modular versions of the analyses, we do
compare the impact of ModConc on the results of the analyses.

Strong updates in non-modular analyses. The implementations of the non-
modular concurrency analyses take advantage of strong updates over the
process map where possible [68]. With this improvement, when an abstract
process identifier maps to a unique abstract process in a process map, joins
can be replaced by updates. As soon as a process identifier may map to more
than one concrete process, joins still have to be used to ensure soundness. This
yields an important improvement for the analysis of programs in which some
of the abstract processes are created only a fixed number of times. However,
as soon as an abstract process is created more than once (e.g., for worker
threads created at the same syntactic location in a loop), strong updates
cannot be performed anymore, so we do not consider this improvement crucial
for analyzing programs that create unboundedly many processes.

Macro-stepping in non-modular analyses. A crucial optimization for the
non-modular analyses is the use of abstract macro-stepping [3, 89]. Under
this optimization, a non-modular analysis explores the behavior of a single
process until it performs an operation that may influence other processes.
This drastically reduces the number of interleavings to explore, yet preserves
soundness.

Fixed-point computations in modular analyses. The fixed-point computations
of the modular analyses are only performed when necessary. If during an
iteration of the inter-process analysis a process depends on communication
effects for which the process was already analyzed, then that process is not
reanalyzed because the result of the analysis would yield identical results.

7.2. Benchmarks
We validate our analyses on two sets of 28 benchmark programs, one set

for each concurrency model. These benchmark programs are listed in Table 1

39

and available online3.
Our actor programs stem from the widely-used Savina benchmark suite [56],

which consists of 28 actor programs written in Scala. These benchmark pro-
grams exhibit multiple instances of actors and dynamic process creation. We
translated each benchmark program—ranging from 102 to 616 lines of Scala
code—to our extended version of λα, resulting in programs that range from 17
to 293 lines of code. Programs of this size are beyond what is currently sup-
ported by existing non-modular analyses for actor programs, as demonstrated
in Section 7.4.

For multi-thread programs there exist no benchmark suite equivalent
to the Savina suite for actor progams. We therefore created our own suite
of benchmark programs inspired by common concurrency problems and
literature, including usual concurrent algorithms such as the alternating bit
protocol, the Dekker algorithm, the producer-consumer problem, the dining
philosophers problem; multi-threaded implementations of common computer
science problems such as matrix multiplication, factorial computation, sorting
algorithm, sudoku solution checker; and implementation of concurrency models
(actors, atomics and software transactional memory) on top of threads. These
benchmarks range from 40 to 219 lines of λτ code.

For our evaluation, we executed all benchmark programs under Scala
2.12.2 using Java 1.8.0_102 on a Mid-2014 MacBook Pro with a 2.8 GHz
Intel Core i7 and 16 GB of RAM, and we report on the average timing of 20
runs after 10 warmup runs.

7.3. Soundness Testing
Section 3.3.2 outlines the soundness proofs for the analyses described in

this paper. In addition, we provide empirical evidence for the soundness of our
implementation of ModConc for λτ and λα through soundness testing [77, 5].
To this end, we verify that all information recorded during concrete runs of
each benchmark program is indeed over-approximated by the analysis of the
same program. No unsound results were reported for any of the benchmark
programs, i.e., the implementation of the analyses over-approximate every
value that was observed during the concrete runs.

3https://github.com/acieroid/scala-am in the directory actor/savina of the
branch modularactors for actor benchmarks, and in the directory threads/suite of
the branch modularthreads for the thread benchmarks.

40

7.4. Performance
We compare the performance of the non-modular analyses to the modular

ModConc analyses for λτ and λα programs. Table 1 lists the results of
our experiments. It is evident that our modular analyses scale beyond non-
modular ones, as they are able to analyze all programs in our benchmark suite
in under 30 seconds, while non-modular analyses can only analyze slightly
more than half of them before timing out after 30 minutes.

Actors Threads

Benchmark NonMod Mod Benchmark NonMod Mod

PP 0.11 0.03 ABP 1.01 0.04
COUNT 0.09 0.02 COUNT 51.08 0.04
FJT 0.03 0.02 DEKKER 0.27 0.01
FJC ε ε FACT ∞ 0.38
THR 233.74 0.02 MATMUL ∞ 7.09
CHAM 1499.94 0.05 MCARLO 1134.67 0.02
BIG ∞ 0.06 MSORT ∞ 0.34
CDICT 21.25 0.09 PC 12.13 0.03
CSLL ∞ 0.08 PHIL 0.41 0.03
PCBB 102.99 0.66 PHILD 4.82 0.03
PHIL ∞ 0.05 PP 0.60 0.02
SBAR ∞ 0.08 RINGBUF ∞ 0.10
CIG 1.40 0.05 RNG 0.71 0.04
LOGM ∞ 0.11 SUDOKU ∞ 0.15
BTX 2.50 0.08 TRAPR 0.42 0.05
RSORT 12.98 0.03 ATOMS 8.71 0.10
FBANK 619.85 0.15 STM ∞ 19.76
SIEVE 0.09 0.03 NBODY ∞ 1.26
UCT ∞ 0.85 SIEVE 0.64 0.16
OFL ∞ 5.75 CRYPT ∞ 20.48
TRAPR 10.24 0.08 MCEVAL ∞ 5.23
PIPREC 0.38 0.05 QSORT ∞ 0.19
RMM ∞ 0.45 TSP ∞ 0.87
QSORT ∞ 1.41 BCHAIN 0.46 0.24
APSP ∞ 1.06 LIFE 663.71 5.69
SOR ∞ 2.39 PPS 56.67 0.54
ASTAR ∞ 0.26 MINIMAX ∞ 7.74
NQN ∞ 0.55 ACTORS ∞ 1.61

Analyzed 15/28 28/28 Analyzed 15/28 28/28

Table 1: Performance evaluation on our two benchmark suites. The NonMod columns
indicate timing for non-modular analyses, and Mod columns indicate timing for ModConc
modular analyses. Times are in seconds. We employed a timeout of two minutes, after
which we denote an analysis time as infinite (∞). We denote the analysis time as ε if the
analysis completes under 1 millisecond.

41

7.5. Precision
Similar to the empirical verification of soundness above, we also measure

the precision of the different analyses according to the precision evaluation
method of our previous work [89], by comparing the maximum-precision
abstraction of the observed values4 in concrete runs of the programs with
the abstract values computed for each analysis. To that end, we aggregate
all observed values during each of the 1000 concrete runs of each benchmark
program, and we compare these values after abstraction to the results of
the analysis. Values computed by the analysis for which no corresponding
concrete value has been observed are called spurious and result in loss of
precision. The more spurious elements an analysis produces, the less precise
the results of the analysis become. We count the spurious elements for each
benchmark program and report on these numbers in Table 2

For λτ programs, we observe created threads, joined threads, read and
written addresses, and acquired and released locks. For λα programs, we
observe created actors, received messages and become statements executed.

We conclude that the precision of each non-modular analysis is identical
to the precision of its modular counterpart for those benchmark programs on
which both analyses terminate (i.e., do not time out). Overall, the precision
of modular thread analysis is 90% on the benchmark suite for λτ programs5,
and the precision of the modular actor analysis is 94% on the benchmark
suite for λα programs6. We investigated each false positive to determine what
caused them and why they are higher for the thread-based benchmarks than
for the actor-based ones. A first difference lies in the fact - more effects -
read/write/acq/rel effects more complex than send/receive - slightly more
complex control-flow

Note that the reported number of spurious elements are merely an upper-
bound on the number of potential spurious elements, as they correspond to
elements that have not been observed in any concrete execution but that may
be present in unexplored concrete executions, and are therefore accounted for
in the results of the analysis.

4For each concrete run of a benchmark, concrete values are observed and recorded. After
all concrete runs of a benchmarks, the set of observed values is abstracted into the abstract
domains of λτ and λα. These abstracted values correspond to the maximal precision that
can be attained by an analysis with that abstract domain.

5380 true positives and 44 spurious elements, 380
380+44 = 0.896.

6317 true positives and 20 spurious elements, 317
317+20 = 0.941.

42

Actors Threads

Benchmark Observed NonMod Mod Benchmark Observed NonMod Mod

PP 9 0 0 ABP 20 0 0
COUNT 8 0 0 COUNT 6 4 4
FJT 3 0 0 DEKKER 16 5 5
FJC 2 0 0 FACT 21 – 8
THR 5 – 0 MATMUL 40 – 0
CHAM 10 – 0 MCARLO 12 – 0
BIG 10 – 0 MSORT 12 – 0
CDICT 13 0 0 PC 15 0 0
CSLL 16 – 0 PHIL 4 0 0
PCBB 13 0 0 PHILD 8 0 0
PHIL 13 – 0 PP 6 0 0
SBAR 19 – 0 RINGBUF 19 – 2
CIG 9 0 0 RNG 6 0 0
LOGM 15 – 0 SUDOKU 58 – 0
BTX 9 0 0 TRAPR 2 0 0
RSORT 10 0 0 ATOMS 6 0 0
FBANK 38 – 0 STM 11 – 7
SIEVE 8 0 0 NBODY 25 – 0
UCT 20 – 8 SIEVE 4 2 2
OFL 13 – 0 CRYPT 2 – 2
TRAPR 7 0 0 MCEVAL 2 – 2
PIPREC 8 0 0 QSORT 18 – 0
RMM 14 – 0 TSP 12 – 8
QSORT 6 – 0 BCHAIN 7 0 0
APSP 5 – 1 LIFE 16 – 4
SOR 12 – 12 PPS 10 0 0
ASTAR 11 – 0 MINIMAX 4 – 0
NQN 11 – 0 ACTORS 18 – 0

Total 317 – 20 Total 380 – 44

Table 2: Precision evaluation on our benchmark suite. The Observed columns provide
the number of observed values in all of the concrete executions of each benchmark. The
NonMod columns provide the number of spurious elements, or false positives, for non-
modular analyses. A dash (–) is used when the analysis does not terminate on a benchmark.
The Mod columns provide the number of spurious elements for modular analyses. The
final line provides the total count of observed elements and spurious elements.

43

7.6. Scalability
We empirically verify the scalability of the modular analyses. To this

end, we generate synthetic benchmark programs for each added factor to the
complexity of the analysis (e.g., number of thread joins, number of actors
created, ...). Each benchmark has a parameter that will increase the number
of the factor in question. We expect to see the time of analysis increase
linearly with the increasing values of the parameter in each benchmark.

We ran each benchmark 20 times after 10 warmup runs for values of
each parameter ranging from 1 to 150. Figure 22 depicts the results of our
experiments. These results empirically demonstrate that the modular analysis
for λτ scales linearly with the complexity of the sequential analysis, adding
as factors the number of different process created, the number of joins and
the number of conflicts. We also demonstrate that the modular analysis for
λα scales linearly with the complexity of the sequential analysis, adding only
the number of different actor behaviors created and the number of different
kinds of messages sent as factors.

In conclusion, these experiments support the claim that our modular
thread analysis scales linearly with the number of abstract process created,
the number of joins performed, and the number of conflicts on addresses,
and that our modular actor analysis scales with the number of different
actor behaviors created and the number of different kinds of messages sent
(Section 3.3.3).

8. Related Work

Our ModConc method derives a modular concurrency analysis from
a sequentialized concurrency analysis that collects communication effects
instead of directly applying them. In this paper, the sequential analysis
we use is inspired by Van Horn and Might’s work on Abstracting Abstract
Machines (AAM) [50]. An AAM intra-process analysis can be parameterized
in such a way that it is able to infer communication effects of processes
with sufficient precision. The resulting ModConc analysis that drives the
mutually dependent intra-process and inter-process fixed-point computation
to analyze the whole concurrent program is completely automatic, requiring
no interaction with the application developer. It approximates the control
flow and data flow in concurrent programs, while scaling beyond non-modular
analysis techniques. We discuss here other related analysis methods for
concurrent programs.

44

0 50 100 150
0

50

100

p

T
im

e
(m

s)

(a) Number of processes, λτ .

0 50 100 150
100

150

200

j

T
im

e
(m

s)

(b) Number of joins, λτ .

0 50 100 150

50

100

150

c

T
im

e
(m

s)

(c) Number of conflicts, λτ .

0 50 100 150
0

50

100

150

200

m

T
im

e
(m

s)

(d) Number of messages sent, λα.

0 50 100 150

60

80

100

b

T
im

e
(m

s)

(e) Number of behaviors, λα.

Figure 22: Scalability evaluation. Each graph corresponds to a benchmark which is
parameterized by a value (p for abstract processes, j for join operations, c for conflicts,
m for number of messages, and b for number of actor behaviors) that is increased from 1
to 150, and shows the running time of the analysis in function of the value of the given
parameter.

45

8.1. Dynamic Analyses
There exist many dynamic methods to analyze concurrent programs,

which are generally unsound and are hence used for bug detection purposes.
Examples include FindBugs [51], which performs syntactic checks on Java
programs to detect shared-memory concurrency bugs, and Dialyzer, for de-
tecting race conditions in Erlang programs [17]. However, the aim of our
work is to over-approximate the behavior of concurrent programs in a sound
manner, at the cost of being subject to imprecisions. Unsound tools are, in
contrast, aimed at precisely detecting certain defects.

There exists a number of dynamic analyses based on automated testing:
dCUTE [81], Basset [63], Bita [93] and Concuerror [16] perform automated
testing of actor-based programs, while jCUTE [82, 84, 83] is a concolic tester
for multi-threaded Java programs supporting dynamic process creation. They
rely on concolic testing [80] and incorporate partial-order reduction as a
way to reduce the number of interleavings to investigate during the analysis.
Partial-order reduction methods reduce the state space that has to be explored
by an analysis, by identifying equivalent process interleavings. ModConc
does not rely on such state space reduction technique as it does not explicitly
model interleavings, and is therefore not impacted by state explosion due to
interleavings.

A large body of work has been dedicated to the detection of race conditions
and of deadlocks in multi-threaded programs. A recent survey [49] describes
43 race detectors, all of which are focused on bug detection rather than on
sound analyses, as are most dynamic deadlock detectors [35, 6, 96, 28, 76].
Again, the approach taken by ModConc is the opposite: it provides a sound
over-approximation of the possible behaviors of the program under analysis,
through static analysis.

8.2. Model Checking
A large effort has been devoted to verifying concurrent systems using

model checking techniques [46, 20, 42, 40, 36, 39, 33, 64, 92, 18].
Most model checking tools (e.g., SPIN [46]) require the program to be

modeled in a formal specification language. Exceptions to this include Ban-
dera [20], Java PathFinder [42], VeriSoft [40], and McErlang [36]. Bandera,
Java PathFinder, and VeriSoft are able to deduce the specification from
the program source, while McErlang implements an Erlang virtual machine
that supports temporal logic queries. All these tools perform verification by
taking as input temporal logic formulas that should hold during the program

46

execution. These formulas are verified against a non-modular analysis of
the model. To mitigate the state explosion problem, state-space reduction
techniques are used to avoid exploring redundant interleavings. Techniques
such as partial-order reduction have been proposed in the context of shared-
memory concurrency [39, 33] and actor-based concurrency [64, 92] to this
end. However, even though model checkers can analyze large programs, they
are still subject to state space explosion. Moreover, model checkers require
the number of processes to be fixed for one verification run: on a generic
program with an unspecified number of processes, the model checker has
to be run with one process, two processes, etc. ModConc, on the other
hand, results in scalable analyses that do not require state-space reduction
techniques and can deal with an unbounded, unspecified, number of processes.
Also, ModConc-based analyses provide an automatic over-approximation
of the possible executions of a program without requiring any user-defined
specifications. Future tools can then use this over-approximation as input in
order to verify specific properties.

Atig et al. have studied decidability results for concurrent programs
with shared memory [9] and locks [10], proposing restricted models under
which some properties become decidable, enabling model checkers to prove
such properties under specific assumptions. In comparison, ModConc,
following the abstract interpretation approach, uses abstractions to overcome
the decidability barrier at the cost of precision, but without limiting the
program under analysis.

Lal and Reps have introduced the notion of context-bounded analysis [62],
in which partial correctness guarantees are given by verifying a program
within a bound on the number of context switches. ModConc does not
make any assumption on the number of context switches.

8.3. Abstract Interpretation
Might and Van Horn extended the AAM approach to a concurrent, shared-

memory concurrency setting [68, 87]. The resulting analysis is a non-modular
analysis of threads.

Another approach to abstract interpretation for concurrent higher-order
programs is Jagannathan et al.’s work [95, 59, 58]. This abstract interpreter
computes the possible values of every variable at each program point in
order to perform compiler optimizations, and supports both dynamic process
creation and higher-order functions. Unlike our approach, this analysis is
performed globally on the program which negatively impact scalability, while

47

our approach performs intra-process analyses that are managed by an inter-
process analysis to scale.

Huch founded a line of work on abstract interpretation of actor-based
programs [52, 53, 54, 55] for automatic analysis of actor-based concurrency.
This work was continued by D’Osualdo in Soter [27, 26, 25]. Soter performs
automatic analysis of Erlang programs to verify the absence of errors, and
requires user-defined code annotations to verify bounds on mailboxes and
mutual exclusion. Soter proceeds in two phases: the first phase computes a
model of the program under analysis, and the second phase performs model
checking on this model with a property to verify. Like our approach, Soter
supports programs with an unbounded number of dynamically created actors.
However, unlike our modular approach, Soter’s scalability is limited because
it performs a non-modular analysis.

Our previous work on non-modular verification of actor-based concur-
rency [89] is a fully automated technique for verifying the absence of error
states and for inferring bounds on mailboxes. As an analysis that immediately
applies inter-process communication effects to the global analysis state, it is
subject to the state explosion problem and does not scale beyond synthetic
programs. The non-modular analysis, however, is able to reason about the
order of messages received by each actor. This is in contrast to the actor-based
ModConc analysis presented in this work, which approximates a mailbox as
an unordered set of messages.

Miné [71] introduces a modular abstract interpretation that reasons over
the values of variables in a concurrent, shared-memory setting. This technique
has been integrated into the AstréeA static analyzer [70] and has been used to
verify very large programs, being able to analyze programs of up to 1.7 million
lines of code with 15-predefined running threads in a few days. ModConc
analyses have not been tested on programs of that order of magnitude. Our
technique performs modular abstract interpretation too, but in addition
supports dynamic process creation and scales linearly with the number of
dynamic processes created.

Similarly, Midtgaard et al. [66] introduce an iterated process analysis for
synchronous message passing programs consisting of two processes. Like
our ModConc analyses, this analysis is based on an intra-process analysis
that analyzes each process in separation, and an inter-process analysis that
combines the results in a global fixed-point loop. The approach is able to
analyze the order of messages in the possible executions of a programs, while
our actor formulation of ModConc does not infer this information. However,

48

the analysis of Midtgaard et al. [66] is limited to programs with two processes,
while ModConc focuses on supporting dynamic process creation.

8.4. Proof systems
Techniques based on proof systems for Erlang such as Rebeca [85, 86], the

Erlang Verification Tool [7, 8], and the work by Dam and Fredlund [24] require
proof system expertise to prove the correctness of a program. ModConc
analyses are completely automatic and require no such expertise.

Concurrent separation logic [78] enables reasoning about thread-based
concurrent systems in a modular way, focusing on resource usage. Techniques
have been proposed to infer logic formulas for (non-concurrent) separation
logic [14], but we are not aware of automatic inference for concurrent separa-
tion logic, nor of the existence of similar techniques for actor systems. There
exists a number of tools and methods to verify concurrent programs anno-
tated with specifications in concurrent separation logic [11, 57], or in other
similar logics, such as rely-guarantee [60], assume-guarantee methods [32],
and others [61]. These approaches lack in terms of inference and require
user-provided specification of components (procedures and/or processes) in
order to verify programs. This is not a concern for ModConc, because our
technique requires no user intervention or annotation.

8.5. Type Systems
There exist various type systems that aim at ensuring specific properties

about concurrent systems, both for thread-based concurrency [13, 12, 30, 12,
29, 1, 79, 6, 96, 75, 76, 28] and actor-based concurrency [23, 74, 47, 48, 22].
Such type systems support unbounded creation of dynamic processes, as
ModConc does. The main differences are the domain of application: type
systems have a very specific application (e.g., proving the absence of deadlocks)
and are hard to re-use for a different application, while a ModConc analysis
can be used as input for a number of applications, as described in Section 3.4.

Type systems for concurrent programs focus mostly on eliminating race
conditions and deadlocks. Multiple extensions of the Java type system have
been described to ensure the absence of certain concurrent properties such as
race conditions [13, 12, 30, 15] and deadlocks [12, 29], some with support for
type inference [1, 79, 97], relieving the developper from annotating the program
by hand. ModConc does not require any annotation from the developper,
and is not focused on detecting such defects but rather on analyzing control
and data flow as a way to build other analyses.

49

Dagnat and Pantel [23] introduce a type-based static analysis that infers
interfaces for actors in a subset of Erlang with the goal of detecting orphan
messages, i.e., messages sent to but never handled by an actor. Our approach
can be used to generate the same information, but reasons about more general
control flow and data flow properties. In the domains of active objects and
process networks, both related to actors, addition of implicit synchronsation
on futures has been proposed in order to enable verification of the absence of
deadlocks [38, 37, 43].

Session types enable the verification of adherence of programs to a protocol.
Mostrous and Vasconcelos have studied session typing for Erlang [74] for
ensuring that sent messages have the expected types. Unlike our approach,
this type system is limited to programs that exhibit no unbounded behavior
and are written in a specific programming style.

In multiparty session types [47], the protocol is expressed as a global type
and can involve multiple parties. Typical multiparty session types rely on
channels used by at most two entities at a time, while in the actor model any
number of actors can send messages to an actor. Multiparty asynchronous
session types solve this limitation [48] by allowing an arbitrary number of
parties participating in a session. However, the global type that specifies the
system requires advanced knowledge about the topology of the system, while
actor systems are inherently dynamic (see Section 2). ModConc does not
rely on such a global type.

Behavioral types have been studied in the context of actors [22]. They deal
with the dynamic topology of the actor system, but are currently restricted
to programs that only perform finite computations. ModConc, in contrast,
is based on a sequential analysis that readily supports infinite sequential
computations, and we have shown that our analysis always terminates.

8.6. Modular Analysis
The concept of a modular analysis as used in this paper has been formalized

by Cousot and Cousot [21], which presents different general-purpose methods
to design modular analyses. These ideas have been applied in the context
of thread-based programs by using concepts from either assume-guarantee
reasoning [31, 44], rely-guarantee reasoning [71, 73], or separation logic [41],
and this in a setting limited to a statically known number of executed threads.
Recent developments have applied modular designs to static analyses of
message-passing programs [66] in a way that is similar to this work, but
limited to programs composed of only two processes. In contrast, our analyses

50

support dynamic process creation where the number of created process may
be unbounded and we have shown that our approach can be used to analyze
both thread-based and actor-based programs. The main challenge compared
to existing work based on Cousot’s techniques is that dynamic creation of
processes is inherent to contemporary concurrent programs must be supported
by static analyses, which is the focus of ModConc. As attested by Miné
and Delmas [72], modular analyses for concurrency have been identified as
being able to fare very well in terms of scalability, as they are not subject to
the state explosion problem.

Note that a number of analysis approaches are, by design, modular and
even compositional: the analysis of the whole program is divided in the
analysis of its components, of which the results can be composed together.
This is the case for type systems and for most proof-based approaches, and
leads to scalable analyses. We provide here a method that is modular but not
compositional: the addition of a new component in the program analysis may
influence the analysis of existing components. This loss of compositionality
is necessary in order to obtain an automated analysis of programs that can
perform for example unrestricted side effects: the addition of a component
could modify a variable used in another component without restrictions.

9. Conclusion and Future Work

This paper describes ModConc, a method to derive scalable modular
static analyses for concurrent programs. Scalability is achieved by avoiding the
state explosion problem that arises when an analysis models every possible
process interleaving at every point that processes can possibly interfere.
Instead, ModConc uses an intra-process analysis to analyze the behavior of
a single process in isolation to infer which processes and communication effects
by this process generates. The information obtained from the intra-process
analyses is used by an inter-process analysis that, based on effects computed
by the intra-process analysis, triggers additional intra-process analyses of
newly created processes and of processes that interfere with the analyzed
process. When no new interprocess communication effects can be discovered,
a sound over-approximation of the behavior of all processes in the program has
been computed. The result is a sound and modular whole-program analysis
for concurrent programs that infers the set of all running processes and their
communication effects in a scalable manner.

51

We applied ModConc to obtain an analysis for multi-threaded programs
and an analysis for actor-based programs, both of which scale linearly in
the number of processes created and in the number of other communication
effects (thread joins, thread conflicts, actor message sends).

We also evaluated the performance and precision of analyses derived by
ModConc. These analyses are able to analyze the entire Savina benchmark
suite [56] and an equivalent suite for threads in a matter of seconds, whereas
non-modular analyses fail to analyze most of the benchmarks using the same
timeout of 30 minutes. Moreover, our modular analyses generate few spurious
elements and achieve an overall precision that is identical to the non-modular
analyses against which we compare with respect to detecting process creation
and communication effects within processes.

We have used context-insensitive allocation strategies in this paper, both
for addresses in the value store and in the continuation store, as well as
for process identifiers. We identify as future work the investigation of other
sensitivities. First, with a global-store widening approach as used in this paper,
we lose potential flow-sensitivity, as all values of the same variable are merged
together. Avoiding relying on the global store within each component of the
analysis would enable regaining flow sensitivity. Second, to obtain context-
sensitive analysis, the intra-process analysis would need to be instrumented
with a notion of history, that can then be used when allocating addresses for the
value store. This follows from traditional ways of obtaining context-sensitivity
in AAM-based analyses [50]. Finally, a novel notion of process-sensitivity
could be investigated: the allocation of process identifiers could take into
account history related to the operations performed by the parent processes
or to the history of process creation. This would increase the number of
components to take into account by the inter-process analysis, for a possibly
increased precision: the analysis could distinguish processes created at the
same call site but at different points in time in the execution of the program.

Another avenue for future work consists in retaining ordering information
between different processes. This may improve precision sufficiently to enable
the verification of stronger properties about processes, such as the properties
used by Midtgaard et al. [67] in the context of two-processes communications.
In our current formulation of the analysis for actors for example, it is not
possible to reason about the order in which messages appear in a mailbox.
This information can be useful to prove properties such as absence of errors
or bounds on mailboxes [89].

Finally, while we have applied our approach to moderately-sized program-

52

ming languages and programs, existing modular analyses have been shown to
scale to real-world languages such as C and to applications of millions of line of
code [70]. Supporting larger languages and programs would require extensive
engineering effort. However, many of the aspects of static analyses that are
required to support these languages are orthogonal to the contributions of this
paper. For example, the support for imperative constructs, or object-oriented
programming with inheritance has been investigated in previous work [69, 77]
and can incorporated in ModConc. Using ModConc to build analyses for
other synchronization mechanism or concurrency primitives such as reentrant
locks or software transactional memory should not face foundational barri-
ers, as these can also be modeled similarly as how locks are modeled here.
Nevertheless, supporting these different models and languages would further
advance the support for concurrency in static analysis.

In summary, this paper demonstrates that it is possible to construct
scalable, sound, and precise analyses for concurrent programs that do not
suffer from the state explosion problem. This can be achieved by taking
advantage of the fact that concurrent programs consist of processes that only
interfere through communication effects. By relying on straightforward and
well-understood sequential analyses for single processes, we are able to build a
sound, modular, scalable analysis for thread-based and actor-based concurrent
programs.

Acknowledgments

Quentin Stiévenart is funded by the strategic research program titled
“Foundations of Programming Models for Next-Generation Computing Plat-
forms” funded by Vrije Universiteit Brussel. Jens Nicolay is funded by the
SeCloud project sponsored by Innoviris, the Brussels Institute for Research
and Innovation.

References

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static
race detection for Java. ACM Trans. Program. Lang. Syst., 28(2):207–255,
2006.

[2] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. Adams, D. P.
Friedman, E. Kohlbecker, G. Steele, D. H. Bartley, R. Halstead, et al.

53

Revised5 report on the algorithmic language scheme. Higher-order and
symbolic computation, 11(1):7–105, 1998.

[3] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for
actor computation. J. Funct. Program., 7(1):1–72, 1997.

[4] G. A. Agha. ACTORS - a model of concurrent computation in distributed
systems. MIT Press series in artificial intelligence. MIT Press, 1986.

[5] E. S. Andreasen, A. Møller, and B. B. Nielsen. Systematic approaches
for increasing soundness and precision of static analyzers. In Proceedings
of the 6th ACM SIGPLAN International Workshop on State Of the Art
in Program Analysis, pages 31–36. ACM, 2017.

[6] C. Artho and A. Biere. Applying static analysis to large-scale, multi-
threaded Java programs. In 13th Australian Software Engineering Con-
ference (ASWEC 2001), 26-28 August 2001, Canberra, Australia, pages
68–75. IEEE Computer Society, 2001.

[7] T. Arts, M. Dam, L. Fredlund, and D. Gurov. System description: Veri-
fication of distributed Erlang programs. In C. Kirchner and H. Kirchner,
editors, Automated Deduction - CADE-15, 15th International Conference
on Automated Deduction, Lindau, Germany, July 5-10, 1998, Proceed-
ings, volume 1421 of Lecture Notes in Computer Science, pages 38–41.
Springer, 1998.

[8] T. Arts and T. Noll. Verifying generic Erlang client-server implementa-
tions. In M. Mohnen and P. W. M. Koopman, editors, Implementation of
Functional Languages, 12th International Workshop, IFL 2000, Aachen,
Germany, September 4-7, 2000, Selected Papers, volume 2011 of Lecture
Notes in Computer Science, pages 37–52. Springer, 2000.

[9] M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan. On
bounded reachability analysis of shared memory systems. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 29. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[10] M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan. Verifi-
cation of asynchronous programs with nested locks. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 93. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

54

[11] S. Blom and M. Huisman. The vercors tool for verification of concur-
rent programs. In International Symposium on Formal Methods, pages
127–131. Springer, 2014.

[12] C. Boyapati, R. Lee, and M. C. Rinard. Ownership types for safe
programming: preventing data races and deadlocks. In M. Ibrahim and
S. Matsuoka, editors, Proceedings of the 2002 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications,
OOPSLA 2002, Seattle, Washington, USA, November 4-8, 2002., pages
211–230. ACM, 2002.

[13] C. Boyapati and M. C. Rinard. A parameterized type system for race-
free Java programs. In L. M. Northrop and J. M. Vlissides, editors,
Proceedings of the 2001 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA 2001,
Tampa, Florida, USA, October 14-18, 2001., pages 56–69. ACM, 2001.

[14] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional
shape analysis by means of bi-abduction. In Z. Shao and B. C. Pierce,
editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009, Savannah, GA,
USA, January 21-23, 2009, pages 289–300. ACM, 2009.

[15] E. Castegren and T. Wrigstad. Reference capabilities for concurrency
control. In ECOOP 2016, July 17–22, Rome, Italy, 2016.

[16] M. Christakis, A. Gotovos, and K. Sagonas. Systematic testing for detect-
ing concurrency errors in erlang programs. In Sixth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2013,
Luxembourg, Luxembourg, March 18-22, 2013, pages 154–163, 2013.

[17] M. Christakis and K. Sagonas. Static detection of race conditions in
Erlang. In M. Carro and R. Peña, editors, Practical Aspects of Declarative
Languages, 12th International Symposium, PADL 2010, Madrid, Spain,
January 18-19, 2010. Proceedings, volume 5937 of Lecture Notes in
Computer Science, pages 119–133. Springer, 2010.

[18] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Satabs: Sat-based
predicate abstraction for ansi-c. In International Conference on Tools

55

and Algorithms for the Construction and Analysis of Systems, pages
570–574. Springer, 2005.

[19] C. Colby. Analyzing the communication topology of concurrent programs.
In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation, La Jolla, California, USA,
June 21-23, 1995, pages 202–213, 1995.

[20] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu,
Robby, and H. Zheng. Bandera: extracting finite-state models from Java
source code. In C. Ghezzi, M. Jazayeri, and A. L. Wolf, editors, Proceed-
ings of the 22nd International Conference on on Software Engineering,
ICSE 2000, Limerick Ireland, June 4-11, 2000., pages 439–448. ACM,
2000.

[21] P. Cousot and R. Cousot. Modular static program analysis. In R. N.
Horspool, editor, Compiler Construction, 11th International Conference,
CC 2002, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12,
2002, Proceedings, volume 2304 of Lecture Notes in Computer Science,
pages 159–178. Springer, 2002.

[22] S. Crafa. Behavioural types for actor systems. CoRR, abs/1206.1687,
2012.

[23] F. Dagnat and M. Pantel. Static analysis of communications for Erlang.
In Proceedings of 8th International Erlang/OTP User Conference, 2002.

[24] M. Dam and L. Fredlund. On the verification of open distributed systems.
In K. M. George and G. B. Lamont, editors, Proceedings of the 1998
ACM symposium on Applied Computing, SAC’98, Atlanta, GA, USA,
February 27 - March 1, 1998, pages 532–540. ACM, 1998.

[25] E. D’Osualdo. Verification of Message Passing Concurrent Systems.
PhD thesis, University of Oxford, United Kingdom, 2015.

[26] E. D’Osualdo, J. Kochems, and C. L. Ong. Automatic verification of
Erlang-style concurrency. In F. Logozzo and M. Fähndrich, editors,
Static Analysis - 20th International Symposium, SAS 2013, Seattle, WA,
USA, June 20-22, 2013. Proceedings, volume 7935 of Lecture Notes in
Computer Science, pages 454–476. Springer, 2013.

56

[27] E. D’Osualdo, J. Kochems, and L. Ong. Soter: an automatic safety verifier
for Erlang. In G. A. Agha, R. H. Bordini, A. Marron, and A. Ricci, editors,
Proceedings of the 2nd edition on Programming systems, languages and
applications based on actors, agents, and decentralized control abstractions,
AGERE! 2012, October 21-22, 2012, Tucson, Arizona, USA, pages
137–140. ACM, 2012.

[28] D. R. Engler and K. Ashcraft. Racerx: effective, static detection of race
conditions and deadlocks. In M. L. Scott and L. L. Peterson, editors,
Proceedings of the 19th ACM Symposium on Operating Systems Principles
2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003, pages
237–252. ACM, 2003.

[29] C. Flanagan and M. Abadi. Types for safe locking. In S. D. Swierstra, ed-
itor, Programming Languages and Systems, 8th European Symposium on
Programming, ESOP’99, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’99, Amsterdam, The
Netherlands, 22-28 March, 1999, Proceedings, volume 1576 of Lecture
Notes in Computer Science, pages 91–108. Springer, 1999.

[30] C. Flanagan and S. N. Freund. Type-based race detection for Java. In
M. S. Lam, editor, Proceedings of the 2000 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Vancouver,
Britith Columbia, Canada, June 18-21, 2000, pages 219–232. ACM, 2000.

[31] C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular verification
for shared-memory programs. In D. L. Métayer, editor, Programming
Languages and Systems, 11th European Symposium on Programming,
ESOP 2002, held as Part of the Joint European Conference on Theory
and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12,
2002, Proceedings, volume 2305 of Lecture Notes in Computer Science,
pages 262–277. Springer, 2002.

[32] C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modular
verification of multithreaded programs. Theoretical Computer Science,
338(1-3):153–183, 2005.

[33] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model
checking software. In J. Palsberg and M. Abadi, editors, Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of

57

Programming Languages, POPL 2005, Long Beach, California, USA,
January 12-14, 2005, pages 110–121. ACM, 2005.

[34] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In R. Cartwright, editor, Proceedings of the
ACM SIGPLAN’93 Conference on Programming Language Design and
Implementation (PLDI), Albuquerque, New Mexico, USA, June 23-25,
1993, pages 237–247. ACM, 1993.

[35] P. Fonseca, C. Li, and R. Rodrigues. Finding complex concurrency
bugs in large multi-threaded applications. In European Conference on
Computer Systems, Proceedings of the Sixth European conference on
Computer systems, EuroSys 2011, Salzburg, Austria, April 10-13, 2011,
pages 215–228, 2011.

[36] L. Fredlund and H. Svensson. McErlang: a model checker for a distributed
functional programming language. In R. Hinze and N. Ramsey, editors,
Proceedings of the 12th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2007, Freiburg, Germany, October 1-3,
2007, pages 125–136. ACM, 2007.

[37] E. Giachino, L. Henrio, C. Laneve, and V. Mastandrea. Actors may
synchronize, safely! In Proceedings of the 18th International Symposium
on Principles and Practice of Declarative Programming, pages 118–131.
ACM, 2016.

[38] E. Giachino, N. Kobayashi, and C. Laneve. Deadlock analysis of un-
bounded process networks. In International Conference on Concurrency
Theory, pages 63–77. Springer, 2014.

[39] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem, volume 1032 of
Lecture Notes in Computer Science. Springer, 1996.

[40] P. Godefroid. Model checking for programming languages using verisoft.
In P. Lee, F. Henglein, and N. D. Jones, editors, Conference Record of
POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Papers Presented at the Symposium, Paris,
France, 15-17 January 1997, pages 174–186. ACM Press, 1997.

58

[41] A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape
analysis. In J. Ferrante and K. S. McKinley, editors, Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, pages
266–277. ACM, 2007.

[42] K. Havelund and T. Pressburger. Model checking JaVa programs using
JaVa PathFinder. STTT, 2(4):366–381, 2000.

[43] L. Henrio, C. Laneve, and V. Mastandrea. Analysis of synchronisations
in stateful active objects. In International Conference on Integrated
Formal Methods, pages 195–210. Springer, 2017.

[44] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-
modular abstraction refinement. In W. A. H. Jr. and F. Somenzi, editors,
Computer Aided Verification, 15th International Conference, CAV 2003,
Boulder, CO, USA, July 8-12, 2003, Proceedings, volume 2725 of Lecture
Notes in Computer Science, pages 262–274. Springer, 2003.

[45] C. Hewitt, P. B. Bishop, and R. Steiger. A universal modular ACTOR
formalism for artificial intelligence. In N. J. Nilsson, editor, Proceedings
of the 3rd International Joint Conference on Artificial Intelligence. Stand-
ford, CA, USA, August 20-23, 1973, pages 235–245. William Kaufmann,
1973.

[46] G. J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

[47] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session
types. In G. C. Necula and P. Wadler, editors, Proceedings of the 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, San Francisco, California, USA, January 7-12,
2008, pages 273–284. ACM, 2008.

[48] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session
types. J. ACM, 63(1):9:1–9:67, 2016.

[49] S. Hong and M. Kim. A survey of race bug detection techniques for
multithreaded programmes. Softw. Test., Verif. Reliab., 25(3):191–217,
2015.

59

[50] D. V. Horn and M. Might. Abstracting abstract machines. In P. Hudak
and S. Weirich, editors, Proceeding of the 15th ACM SIGPLAN inter-
national conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010, pages 51–62. ACM, 2010.

[51] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Notices,
39(12):92–106, 2004.

[52] F. Huch. Verification of Erlang programs using abstract interpretation
and model checking. In D. Rémi and P. Lee, editors, Proceedings of
the fourth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’99), Paris, France, September 27-29, 1999., pages
261–272. ACM, 1999.

[53] F. Huch. Verification of Erlang programs using abstract interpretation
and model checking. PhD thesis, RWTH Aachen University, Germany,
2001.

[54] F. Huch. Model checking Erlang programs - abstracting recursive function
calls. Electr. Notes Theor. Comput. Sci., 64:195–219, 2002.

[55] F. Huch. Model checking Erlang programs - ltl-propositions and abstract
interpretation. In P. Dadam and M. Reichert, editors, INFORMATIK
2004 - Informatik verbindet, Band 2, Beiträge der 34. Jahrestagung der
Gesellschaft für Informatik e.V. (GI), Ulm, 20.-24. September 2004,
volume 51 of LNI, pages 438–448. GI, 2004.

[56] S. M. Imam and V. Sarkar. Savina - an actor benchmark suite: Enabling
empirical evaluation of actor libraries. In E. G. Boix, P. Haller, A. Ricci,
and C. Varela, editors, Proceedings of the 4th International Workshop on
Programming based on Actors Agents & Decentralized Control, AGERE!
2014, Portland, OR, USA, October 20, 2014, pages 67–80. ACM, 2014.

[57] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. Verifast: A powerful, sound, predictable, fast verifier for c
and java. In NASA Formal Methods Symposium, pages 41–55. Springer,
2011.

[58] S. Jagannathan. Locality abstractions for parallel and distributed com-
puting. In T. Ito and A. Yonezawa, editors, Theory and Practice of

60

Parallel Programming, International Workshop TPPP’94, Sendai, Japan,
November 7-9, 1994, Proceedings, volume 907 of Lecture Notes in Com-
puter Science, pages 320–345. Springer, 1994.

[59] S. Jagannathan and S. Weeks. Analyzing stores and references in a
parallel symbolic language. In LISP and Functional Programming, pages
294–305, 1994.

[60] C. B. Jones. Specification and design of (parallel) programs. In IFIP
Congress, pages 321–332, 1983.

[61] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,
and D. Dreyer. Iris: Monoids and invariants as an orthogonal basis for
concurrent reasoning. In ACM SIGPLAN Notices, volume 50, pages
637–650. ACM, 2015.

[62] A. Lal and T. Reps. Reducing concurrent analysis under a context bound
to sequential analysis. Formal Methods in System Design, 35(1):73–97,
2009.

[63] S. Lauterburg, M. Dotta, D. Marinov, and G. A. Agha. A framework
for state-space exploration of Java-based actor programs. In ASE 2009,
24th IEEE/ACM International Conference on Automated Software Engi-
neering, Auckland, New Zealand, November 16-20, 2009, pages 468–479.
IEEE Computer Society, 2009.

[64] S. Lauterburg, R. K. Karmani, D. Marinov, and G. Agha. Evaluating
ordering heuristics for dynamic partial-order reduction techniques. In
D. S. Rosenblum and G. Taentzer, editors, Fundamental Approaches to
Software Engineering, 13th International Conference, FASE 2010, Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings,
volume 6013 of Lecture Notes in Computer Science, pages 308–322.
Springer, 2010.

[65] M. Martel and M. Gengler. Communication topology analysis for con-
current programs. In SPIN Model Checking and Software Verification,
7th International SPIN Workshop, Stanford, CA, USA, August 30 -
September 1, 2000, Proceedings, pages 265–286, 2000.

61

[66] J. Midtgaard, F. Nielson, and H. R. Nielson. Iterated process analysis
over lattice-valued regular expressions. In J. Cheney and G. Vidal,
editors, Proceedings of the 18th International Symposium on Principles
and Practice of Declarative Programming, Edinburgh, United Kingdom,
September 5-7, 2016, pages 132–145. ACM, 2016.

[67] J. Midtgaard, F. Nielson, and H. R. Nielson. A parametric abstract
domain for lattice-valued regular expressions. In X. Rival, editor, Static
Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK,
September 8-10, 2016, Proceedings, volume 9837 of Lecture Notes in
Computer Science, pages 338–360. Springer, 2016.

[68] M. Might and D. V. Horn. A family of abstract interpretations for
static analysis of concurrent higher-order programs. In E. Yahav, editor,
Static Analysis - 18th International Symposium, SAS 2011, Venice, Italy,
September 14-16, 2011. Proceedings, volume 6887 of Lecture Notes in
Computer Science, pages 180–197. Springer, 2011.

[69] M. Might, Y. Smaragdakis, and D. Van Horn. Resolving and exploiting
the k-cfa paradox: illuminating functional vs. object-oriented program
analysis. In ACM Sigplan Notices, volume 45, pages 305–315. ACM,
2010.

[70] A. Miné. Static analysis of run-time errors in embedded real-time parallel
C programs. Logical Methods in Computer Science, 8(1), 2012.

[71] A. Miné. Relational thread-modular static value analysis by abstract
interpretation. In K. L. McMillan and X. Rival, editors, Verification,
Model Checking, and Abstract Interpretation - 15th International Con-
ference, VMCAI 2014, San Diego, CA, USA, January 19-21, 2014,
Proceedings, volume 8318 of Lecture Notes in Computer Science, pages
39–58. Springer, 2014.

[72] A. Miné and D. Delmas. Towards an industrial use of sound static
analysis for the verification of concurrent embedded avionics software.
In A. Girault and N. Guan, editors, 2015 International Conference on
Embedded Software, EMSOFT 2015, Amsterdam, Netherlands, October
4-9, 2015, pages 65–74. IEEE, 2015.

62

[73] R. Monat and A. Miné. Precise thread-modular abstract interpretation
of concurrent programs using relational interference abstractions. In
A. Bouajjani and D. Monniaux, editors, Verification, Model Checking,
and Abstract Interpretation - 18th International Conference, VMCAI
2017, Paris, France, January 15-17, 2017, Proceedings, volume 10145 of
Lecture Notes in Computer Science, pages 386–404. Springer, 2017.

[74] D. Mostrous and V. T. Vasconcelos. Session typing for a featherweight
Erlang. In W. D. Meuter and G. Roman, editors, Coordination Models
and Languages - 13th International Conference, COORDINATION 2011,
Reykjavik, Iceland, June 6-9, 2011. Proceedings, volume 6721 of Lecture
Notes in Computer Science, pages 95–109. Springer, 2011.

[75] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for
Java. In M. I. Schwartzbach and T. Ball, editors, Proceedings of the
ACM SIGPLAN 2006 Conference on Programming Language Design
and Implementation, Ottawa, Ontario, Canada, June 11-14, 2006, pages
308–319. ACM, 2006.

[76] M. Naik, C. Park, K. Sen, and D. Gay. Effective static deadlock detection.
In 31st International Conference on Software Engineering, ICSE 2009,
May 16-24, 2009, Vancouver, Canada, Proceedings, pages 386–396. IEEE,
2009.

[77] J. Nicolay, Q. Stiévenart, W. De Meuter, and C. De Roover. Purity
analysis for JavaScript through abstract interpretation. Journal of
Software: Evolution and Process, pages e1889–n/a, 2017. e1889 smr.1889.

[78] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007.

[79] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller. Automated
type-based analysis of data races and atomicity. In K. Pingali, K. A.
Yelick, and A. S. Grimshaw, editors, Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP
2005, June 15-17, 2005, Chicago, IL, USA, pages 83–94. ACM, 2005.

[80] K. Sen. Concolic testing. In 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), November 5-9, 2007,
Atlanta, Georgia, USA, pages 571–572, 2007.

63

[81] K. Sen and G. Agha. Automated systematic testing of open distributed
programs. In L. Baresi and R. Heckel, editors, Fundamental Approaches
to Software Engineering, 9th International Conference, FASE 2006, Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceedings,
volume 3922 of Lecture Notes in Computer Science, pages 339–356.
Springer, 2006.

[82] K. Sen and G. Agha. CUTE and jcute: Concolic unit testing and
explicit path model-checking tools. In Computer Aided Verification, 18th
International Conference, CAV 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, pages 419–423, 2006.

[83] K. Sen and G. Agha. A race-detection and flipping algorithm for auto-
mated testing of multi-threaded programs. In Hardware and Software,
Verification and Testing, Second International Haifa Verification Confer-
ence, HVC 2006, Haifa, Israel, October 23-26, 2006. Revised Selected
Papers, pages 166–182, 2006.

[84] K. Sen and G. A. Agha. Concolic testing of multithreaded programs and
its application to testing security protocols. Technical report, 2006.

[85] M. Sirjani, F. S. de Boer, and A. Movaghar-Rahimabadi. Modular verifi-
cation of a component-based actor language. J. UCS, 11(10):1695–1717,
2005.

[86] M. Sirjani and M. M. Jaghoori. Ten years of analyzing actors: Rebeca
experience. In G. Agha, O. Danvy, and J. Meseguer, editors, Formal
Modeling: Actors, Open Systems, Biological Systems - Essays Dedicated
to Carolyn Talcott on the Occasion of Her 70th Birthday, volume 7000 of
Lecture Notes in Computer Science, pages 20–56. Springer, 2011.

[87] Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover. Detecting
concurrency bugs in higher-order programs through abstract interpre-
tation. In M. Falaschi and E. Albert, editors, Proceedings of the 17th
International Symposium on Principles and Practice of Declarative Pro-
gramming, Siena, Italy, July 14-16, 2015, pages 232–243. ACM, 2015.

[88] Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover. Building a
modular static analysis framework in Scala (tool paper). In A. Biboudis,

64

M. Jonnalagedda, S. Stucki, and V. Ureche, editors, Proceedings of
the 7th ACM SIGPLAN Symposium on Scala, SCALA@SPLASH 2016,
Amsterdam, Netherlands, October 30 - November 4, 2016, pages 105–109.
ACM, 2016.

[89] Q. Stiévenart, J. Nicolay, W. De Meuter, and C. De Roover. Mailbox
abstractions for static analysis of actor programs. In P. Müller, editor,
31st European Conference on Object-Oriented Programming, ECOOP
2017, June 19-23, 2017, Barcelona, Spain, volume 74 of LIPIcs, pages
25:1–25:30. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[90] Q. Stiévenart, M. Vandercammen, W. De Meuter, and C. De Roover.
Scala-AM: A modular static analysis framework. In 16th IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation,
SCAM 2016, Raleigh, NC, USA, October 2-3, 2016, pages 85–90. IEEE
Computer Society, 2016.

[91] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5(2):285–309, 1955.

[92] S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay, D. Marinov, and
G. Agha. Transdpor: A novel dynamic partial-order reduction tech-
nique for testing actor programs. In H. Giese and G. Rosu, editors,
Formal Techniques for Distributed Systems - Joint 14th IFIP WG 6.1
International Conference, FMOODS 2012 and 32nd IFIP WG 6.1 In-
ternational Conference, FORTE 2012, Stockholm, Sweden, June 13-16,
2012. Proceedings, volume 7273 of Lecture Notes in Computer Science,
pages 219–234. Springer, 2012.

[93] S. Tasharofi, M. Pradel, Y. Lin, and R. Johnson. Bita: Coverage-
guided, automatic testing of actor programs. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
pages 114–124. IEEE, 2013.

[94] A. Valmari. The state explosion problem. In W. Reisig and G. Rozenberg,
editors, Lectures on Petri Nets I: Basic Models, Advances in Petri Nets,
the volumes are based on the Advanced Course on Petri Nets, held in
Dagstuhl, September 1996, volume 1491 of Lecture Notes in Computer
Science, pages 429–528. Springer, 1996.

65

[95] S. Weeks, S. Jagannathan, and J. Philbin. A concurrent abstract inter-
preter. Lisp and Symbolic Computation, 7(2-3):173–193, 1994.

[96] A. L. Williams, W. Thies, and M. D. Ernst. Static deadlock detection
for Java libraries. In A. P. Black, editor, ECOOP 2005 - Object-Oriented
Programming, 19th European Conference, Glasgow, UK, July 25-29,
2005, Proceedings, volume 3586 of Lecture Notes in Computer Science,
pages 602–629. Springer, 2005.

[97] J. Yi, T. Disney, S. N. Freund, and C. Flanagan. Cooperative types for
controlling thread interference in java. Science of Computer Programming,
112:227–260, 2015.

66

A. Concrete Semantics

The concrete semantics of λ0 is provided in Fig. A.23, and a concrete
allocation strategy is provided in Fig. A.24. The concrete semantics of λτ is
provided in Fig. A.27, and a concrete process allocation strategy for λτ is
provided in Fig. A.28. The concrete semantics of λα is provided in Fig. A.29,
and a concrete process allocation strategy for λα is provided in Fig. A.30.

λ0

State space

ς ∈ Σ = Control × KAddr
c ∈ Control ::= ev(e, ρ)

| ko(v)
ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ Val

Ξ ∈ KStore = KAddr ⇀ Kont
κ ∈ Kont ::= φ : k | ε

φ ∈ Φ ::= letrec(e, a, ρ)
v ∈ Val ::= clo(lam, ρ)

a ∈ Addr a set of addresses
k ∈ KAddr a set of addresses

Transition relation

ρ, σ ` ae ⇓ v

〈ev(ae, ρ), k〉, σ,Ξ 〈ko(v), k〉, σ,Ξ
Atomic

ρ, σ ` f ⇓ clo((λ (x) e), ρ′) ρ, σ ` ae ⇓ v a = alloc(x, σ)
〈ev((f ae), ρ), k〉, σ,Ξ 〈ev(e, ρ′[x 7→ a]), k〉, σ[a 7→ v],Ξ

App

a = alloc(x, σ) k′ = kalloc(e2, ρ, σ,Ξ) ρ′ = ρ[x 7→ a]

〈ev((letrec ((x e1)) e2), ρ), k〉, σ,Ξ
〈ev(e1, ρ′), k′〉, σ,Ξ[k′ 7→ letrec(e2, a, ρ′) : k]

Letrec1

Ξ(k) = letrec(e, a, ρ) : k′

〈ko(v), k〉, σ,Ξ 〈ev(e, ρ), k′〉, σ[a 7→ v],Ξ
Letrec2

Atomic evaluation

v = σ(ρ(x))

ρ, σ ` x ⇓ v
Var

ρ, σ ` lam ⇓ clo(lam, ρ)
Lambda

Figure A.23: Concrete state space and concrete semantics for λ0 programs.

67

λ0

Allocation
Addr = N

KAddr = N
alloc(x,Ξ) = |Dom(σ)|

kalloc(e, ρ, σ,Ξ) = |Dom(Ξ)|

Figure A.24: Concrete allocation strategy for λ0 programs.

λτ

State space
v ∈ Val ::= . . . | pid(p)
p ∈ PID a set of process identifiers

Effects
eff ∈ Effect ::= c(p, ς) | j(p, v)

Transition relation

〈ev((spawn e), ρ), k〉, σ,Ξ c(p̂,〈ev(e,ρ̂),k̂0〉) 〈ko(pid(p)), k〉, σ,Ξ
Spawn

ρ, σ ` ae ⇓ pid(p)

〈ev((join ae), ρ), k〉, σ,Ξ j(p,v) 〈ko(v), k〉, σ,Ξ
Join

Figure A.25: Concrete semantics of thread management in the λτ language.

B. Non-Modular Analysis of λτ

We provide in Fig. B.31 a transition relation that acts on program states
for λτ , as used in Section 5.3.

68

λτ

State space
v ∈ Val ::= . . . | ref(a)

Effects
eff ∈ Effect ::= . . . | r(a) | w(a)

Transition relation

a = alloc(ae, σ) ρ, σ ` ae ⇓ v

〈ev((ref ae), ρ), k〉, σ,Ξ 〈ko(ref(a)), k〉, σ[a 7→ v],Ξ
Ref

ρ, σ ` ae ⇓ ref(a) v = σ(a)

〈ev((deref ae), ρ), k〉, σ,Ξ r(a) 〈ko(v), k〉, σ,Ξ
Deref

ρ, σ ` ae ⇓ ref(a) ρ, σ ` ae′ ⇓ v

〈ev((ref-set ae ae′), ρ), k〉, σ,Ξ w(a) 〈ko(v), k〉, σ[a 7→ v],Ξ
RefSet

Figure A.26: Concrete semantics of references in the λτ language.

69

λτ

State space

v ∈ Val ::= . . . | lock(a) | locked(p) | unlocked

Effects
eff ∈ Effect ::= . . . | acq(p, a) | rel(p, a)

Transition relation

a = alloc((new-lock), σ)
〈ev((new-lock), ρ), k〉, σ,Ξ 〈ko(lock(a)), k〉, σ[a 7→ unlocked],Ξ

NewLock

ρ, σ ` ae ⇓ lock(a) σ(a) = unlocked

〈ev((acquire ae), ρ)〉, k, σ,Ξ acq(p,a)

〈ko(lock(a)), k〉, σ[a 7→ locked(p)],Ξ

Acquire

ρ, σ ` ae ⇓ lock(a) σ(a) = locked(p)

〈ev((release ae), ρ), k〉, σ,Ξ rel(p,a)

〈ko(lock(a)), k〉, σ[a 7→ unlocked],Ξ

Release

Figure A.27: Concrete semantics of locks in the λτ language.

λτ

Process identifier allocation

p ∈ PID = N palloc(_, π) = |Dom(π)|

Figure A.28: Allocation of concrete process identifiers in λτ .

70

λα

State space
ς ∈ Σ = Control × Beh × KAddr

c ∈ Control ::= . . . | wait
v ∈ Val ::= . . . | actdef(act, ρ)
b ∈ Beh ::= act(act, ρ) | main
p ∈ PID a set of process identifiers

Effects
eff ∈ Effect ::= c(p, ς) | snd(p, t, v) | rcv(t, v)

Atomic evaluation

ρ, σ ` act ⇓ actdef(act, ρ)
Actor

Transition relation

ρ, σ ` ae ⇓ act(act, ρ′)
ρ, σ ` ae′ ⇓ v a = alloc(x, σ) x = var(act)

〈ev((create ae ae′), ρ), b, k〉, σ,Ξ c(p,〈wait,act(act,ρ′[x 7→a]),k0〉)

〈ko(pid(p)), b, k〉, σ[a 7→ v],Ξ

Create

a = alloc(x, σ) ρ, σ ` ae ⇓ actdef(act, ρ′)
ρ, σ ` ae′ ⇓ v b = act(act, ρ′[x 7→ a]) x = var(act)

〈ev((become ae ae′), ρ), b, k〉, σ,Ξ 〈wait, b′, k〉, σ[a 7→ v],Ξ
Become

ρ, σ ` ae ⇓ pid(p) ρ, σ ` ae′ ⇓ v

〈ev((send ae t ae′), ρ), b, k〉, σ,Ξ snd(p,t,v) 〈ko(v), b, k〉, σ,Ξ
Send

a = alloc(y, σ) (y, e) = handler(act, t)

〈wait, act(act, ρ), k〉, σ,Ξ rcv(t,v)

〈ev(e, ρ[y 7→ a]), act(act, ρ), k〉, σ[a 7→ v],Ξ

Receive

Figure A.29: Concrete semantics of the λα language.

71

λα

Allocation
p ∈ PID = N palloc(_, π) = |Dom(π)|

Figure A.30: Concrete allocation strategy for the λα language.

λτ

Program state space

π̂ ∈ Π̂ = P̂ID → P(Σ̂)

Program transition relation

π̂(p̂) 3 ς̂ ς̂ , σ̂, Ξ̂ ̂ ς̂ ′, σ̂′, Ξ̂′

π̂, σ̂, Ξ̂ ⇒̂ p̂ π̂ t [p̂ 7→ {ς̂ ′}], σ̂′, Ξ̂′ NoEff

π̂(p̂) 3 ς̂ ς̂ , σ̂, Ξ̂
c(p̂′,ς̂′′)

, ς̂ ′, σ̂′, Ξ̂′ p̂′ = p̂alloc(ς̂ ′′, π̂)
π̂, σ̂, Ξ̂ ⇒̂ p̂ π̂ t [p̂ 7→ {ς̂ ′} , p̂′ 7→ {ς̂ ′′}], σ̂′, Ξ̂′ CreateEff

π̂(p̂) 3 ς̂ ς̂ , σ̂, Ξ̂
j(p̂′,v̂)

, ς̂ ′, σ̂′, Ξ̂′ π̂(p̂′) 3 〈ko(v̂), k̂0〉
π̂, σ̂, Ξ̂ ⇒̂ p̂ π̂ t [p̂ 7→ {ς̂ ′}], σ̂′, Ξ̂′ JoinEff

π̂(p̂) 3 ς̂ ς̂ , σ̂, Ξ̂
êff

, ς̂ ′, σ̂′, Ξ̂′

êff ∈ {w(â), r(â), acq(p̂, â), rel(p̂, â)}
π̂, σ̂, Ξ̂ ⇒̂ p̂ π̂ t [p̂ 7→ {ς̂ ′}], σ̂′, Ξ̂′ OtherEffs

Figure B.31: Program transition relation for non-modular analysis of λτ programs.

72

