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Abstract. We introduce STRAF, a Scala framework for recording and
optimizing execution traces of an interpreter it is composed with. For
interpreters that satisfy the requirements detailed in this paper, this
composition requires but a small effort from the implementer to result in
a trace-based JIT compiler. We describe the framework, and illustrate its
composition with a Scheme interpreter that satisfies the aforementioned
requirements. We benchmark the resulting trace-based JIT compiler on
a set of Scheme programs. Finally, we implement an optimization to
demonstrate that STRAF enables further experimentation in the domain.
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1 Introduction

Trace-based just-in-time (JIT) compilers do not compile an entire program up-
front, but rather start by interpreting the program and identifying its frequently
executed loops at run-time. Instructions of these loops are recorded into a trace.
Once one iteration of such a loop has been traced, the compiler compiles and
optimizes the resulting trace. Subsequent iterations will execute the optimized
trace rather than interpret the original loop, resulting in speed-ups.

Most trace-based JIT compilers are constructed specifically for one particular
programming language. As a result, few efforts are shared between implementa-
tions. The RPython framework for implementing trace-based JIT compilers [I]
addresses this problem. Its runtime is capable of tracing various interpreters.
However, while RPython enables constructing performant language runtimes, its
focus on maximizing performance may hinder its comprehensibility and adapt-
ability. In contrast to RPython our framework does not focus on performance.
Instead, it aims at being minimalistic, comprehensible, and extensible. This way,
our framework should facilitate further experimentation in the domain of trace
recording and optimization.

This paper reports on the integration of our earlier ideas [12] in SCALA-
AM [10], a framework for implementing interpreters from abstract machine for-
malizations and using these abstract machines as static program analyzers. We
call the resulting Scala framework for developing trace-based JIT compilers



STRAF. Its integration into the SCALA-AM static analysis framework specifically,
though not uniquely, enables experimenting with employing static analysis to
improve optimization of traces. The complete implementation of STRAF is avail-
able at https://github.com/mvdcamme/scala-am.

2 Trace-based JIT Compilation

Trace-based JIT compilers build on two assumptions: most of a program’s exe-
cution time is spent in loops, and several iterations of the same loop are likely to
take the same path through the program [I]. They therefore optimize frequently
executed loops, whereas method-based JIT compilers optimize methods only.

Trace-based JIT compilers are generally conceived as a mixed-mode exe-
cution involving an interpreter and a compiler. The interpreter executes the
program and simultaneously profiles loops to identify the frequently executed
ones. When a “hot” loop is detected, the interpreter starts tracing its execution:
every operation performed by the interpreter is recorded. Tracing continues un-
til a full loop iteration is complete. The compiler optimizes the recorded trace
next. Subsequent iterations of the loop then execute the compiled trace directly.
Conditions that held when a trace was recorded might no longer hold when the
trace is executed. Trace-based JIT compilers therefore add guards to the trace
to verify these conditions. When a guard fails, trace execution is aborted and
regular interpretation of the program is resumed.

Figure [1] depicts a Scheme function fact that computes the factorial of 5.
The recursive calls implement a loop that, when recorded, results in the trace of
operations depicted on the right. If the condition (= n 0) evaluated to false
while recording, the trace will feature a guard ActionGuardFalse verifying that
this condition still evaluates to false when the trace is executed. As such, the
trace corresponds to the operations performed by the interpreter in the false-
branch of the if-expression. Should this guard fail at run-time, trace execution
is aborted and interpretation will resume from the other branch.

ActionEvalPush("=", FrameFunCallFunction(List("n", 0)))
ActionLookupVar ("=")
ActionPushValue
ActionPopKont
(letrec ((fact (lambda (n) ActionEvalPush("n", FrameFunCallFunction(List(0)))
(if (= n 0) ActionLookupVar("n")
1 ActionPushValue
(* n (fact (- n 1)) ActionPopKont
(fact 5)) ActionEvalPush(0, FrameFunCallArgs(List()))

ActionLiteralValue(0)

ActionGuardFalse(...)
ActionEvalTraced((* n (fact (- n 1))))

Fig. 1: A Scheme program containing a loop and part of the corresponding trace.
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3 The STRAF framework for building JIT compilers

STRAF decouples tracing mechanisms from language semantics through a fixed
tracing machine (or tracer) that can be composed with a developer-provided
abstract machine (or interpreter) [5]. The abstract machine handles regular pro-
gram execution while the tracing machine is responsible for trace recording and
execution. Any abstract machine can be used, on the condition that it satisfies
the requirements outlined in Section Section describes an example of
such an abstract machine for the Scheme programming language. The tracing
machine of our framework is detailed in Section 3.3

3.1 Requirements on the Abstract Machine

Program State The interpreter must be conceived as an abstract machine
that transitions between program states. This way, the tracing machine can
easily resume program evaluation from a particular state. Instructions recorded
into a trace then correspond to state transitions. Interpreters modeled after the
ubiquitous CESK machine [6] trivially satisfy this requirement. However, we
do not impose any constraints on the actual state representation used by the
abstract machine.

Tracing Signals The tracing machine is to record “hot” loops, but their form
is language-specific. For instance, loops are typically implemented using recur-
sive functions in Scheme. For STRAF to remain language-agnostic, the abstract
machine it is composed with must signal when it has started one loop iteration
by using a SignalStart instance. It must also label each loop-expression in the
program. This enables the tracing machine to associate traces with loops.

Guards Traces include guard instructions verifying that their control flow re-
mains valid for a later execution. These too have to be provided by the abstract
machine STRAF is composed with. Guards need to provide a restart point from
which the abstract machine can resume interpretation when the guard fails dur-
ing trace execution. No other constraints are imposed on their implementation.

Hooks Finally, the abstract machine must provide the following functions to
the tracing machine:

— A function step which, given a program state, returns a Step instance en-
capsulating the actions to be applied on this state. A Step can also include
a SignalStart.

— An applyActions function which consecutively applies the actions from a
Step to a given program state, and returns the new resulting program state.

— A restart function which takes a program state and the restart point of a
failed guard as input and returns a new program state.



— An optimize function which, given a previously recorded trace and the
program state observed at the start of the recording of this trace, returns an
optimized version of this trace. Implementing this function in the abstract
machine ensures that STRAF itself remains language-agnostic.

3.2 A CESK-based Interpreter for Scheme

Section [4 will compose STRAF with a Scheme interpreter to evaluate the result-
ing trace-based JIT compiler. Being modeled after a CESK-machine [6], this
interpreter trivially satisfies the requirements of Section Listing [1| defines
its representation of program states. Their first component control is either an
expression to be evaluated or a continuation frame to be followed. In addition,
their environment component env maps variables to addresses and their store
component sto maps these addresses to Scheme values. The remaining compo-
nents are a continuation stack kstack, a value register v containing the value of
the last expression that was evaluated, and a value stack vstack which is used
to save lexical environments and argument values while evaluating a function
call.

type Storable = Either[Value, Environment]
case class Step(actions: List[Action], signal: Signal!)
case class ProgramState(control: Control, env: Environment, sto: Store,
kstack: Stack[Frame], v: Value, vStack: Stack[Storable])

Listing 1: Representation of program states.

To evaluate a composite expression, the interpreter pushes a specific contin-
uation frame onto the continuation stack before evaluating its subexpressions.
This frame is later popped and continued with when the interpreter has finished
evaluating the subexpressions. States corresponding to the latter case feature
the popped continuation frame as their control component instead of an ex-
pression. For those states, the interpreter’s step function (cf. the hooks defined
above) applies a function stepKont on the continuation frame and the contents
of the value register v.

def stepEval(exp: SchemeExp): Step = exp match {
case SchemeVarRef (varName) =>
Step(List (ActionLookupVar (varName), ActionPopKont),
SignalFalse)
case SchemeFuncall(function, args) =>
Step(List (..., ActionEvalPush(function, FrameFunCallFunction(args)))),
SignalFalse)

Listing 2: Handling function application and variable lookup in stepEval.

stepEval Listing [2] illustrates how function stepEval evaluates atomic expres-
sions such as variable references and composite expressions such as function calls.
For variable references, the interpreter returns a list of actions ActionLookupVar
and ActionPopKont which respectively perform the variable lookup, placing the



resulting value in v, and pop the topmost continuation from the stack. For a
function call, stepEval returns an ActionEvalPush among its actions which
pushes a FrameFunCallFunction onto the continuation stack before proceeding
to evaluate the function subexpression. The pushed continuation encapsulates
the function arguments that need to be evaluated next. For neither expression
a loop is entered. This is communicated to the tracer using the SignalFalse
argument to Step.

stepKont Listing [3| details how stepKont handles the remainder of function
call evaluation. stepKont takes as input the value v that was just computed
and the frame that was popped from the continuation stack. The former either
corresponds to the invoked procedure (i.e., for FrameFunCallFunction frames)
or to one of the argument values (i.e., for FrameFunCallArg frames). Func-
tion evalFunctionCall is delegated to in either case. If no more arguments
remain to be evaluated, evaluation proceeds to the body of the called procedure
(ActionStepIn). Otherwise, the newly computed value is saved on the value
stack (ActionPushVal) and evaluation proceeds to a new argument by pushing
FrameFunCallArgs onto the continuation stack. As loops are typically imple-
mented through recursion in Scheme, any call can potentially start a loop. The
interpreter therefore sends a SignalStart whenever a procedure is stepped into.
The body of the invoked procedure functions as loop label.
def evalFunctionCall(functionValue: FunctionValue, args: List[SchemeExp]): Step = args match {
case Nil =>
Step(List(... , ActionStepIn),
SignalStart (functionValue.body))
case e :: rest =>
Step(List(... , ActionPushVal, ActionPushTraced(e, FrameFunCallArgs(functionValue, rest))),

SignalFalse))
}

def stepKont(v: Value, frame: Frame): Step = frame match {
case FrameFunCallFunction(args) =>
evalFunctionCall(v, args)
case FrameFunCallArg(functionValue, args) =>
evalFunctionCall (functionValue, args)

Listing 3: Continuation of function call evaluation in stepKont.

Applying Actions Listing |4|illustrates how the applyActions hook applies a
single action to a given program state. In the case of an ActionEvalPush, the
interpreter retrieves the expression exp to be evaluated and places a correspond-
ing ControlExp in the control component of the program state. The given frame
is also pushed onto the continuation stack.

Guards Listing [9] illustrates how the interpreter communicates guard instruc-
tion to the tracer for (if pred cons alt) expressions. An ActionGuardTrue



def applyAction(state: ProgramState, action: Action): ProgramState = action match {
case ActionEvalPush(exp, frame) =>
state.copy(control = ControlExp(e), kstack = state.kstack.push(frame))

Listing 4: Applying a single ActionPush action to a given program state.

with a restart point that refers to the alt-expression is emitted when pred evalu-
ates to true. Like other actions, this guard will be executed by the applyAction
function. Should it then find that the expression last evaluated (i.e., pred) did
not evaluate to true, the function calls restart with the current program state
and the restart point encapsulated in the guard. As depicted in the same list-
ing, restart only has to replace the old control component of the state by this
restart point.

case class ActionGuardTrue(restart: RestartPoint) extends Action
case class RestartGuardIfFailed(exp: SchemeExp) extends RestartPoint

def stepKont(v: Value, frame: Frame, sto: Store): Step = frame match {
case FramelIf(cons, alt) =>
if (v.isTrue()) {
Step(List (ActionGuardTrue (RestartGuardIfFailed(alt)) ...),
SignalFalse) }
else { ... }

}

def restart(state: ProgramState, restart: RestartPoint): ProgramState = restart match {
case RestartGuardIfFailed(exp) =>
state.copy(control = ControlExp(exp))

Listing 5: Emitting guards for an if-expression.

3.3 Tracing Machine

The tracing machine controls the mixed-mode execution of the program. Figure[2]
depicts the transitions between its three modes: 1) normal interpretation, in
which the interpreter executes the program without interference from the tracing
machine; 2) trace recording, in which the tracer records all actions undertaken
by the interpreter; and 3) trace execution in which the tracing machine executes
a previously recorded trace.

Normal Interpretation In this mode, the tracer repeatedly asks the abstract
machine to perform a single interpretation step. The tracer updates the current
program state by applying the actions returned by the interpreter. If these ac-
tions do not include a tracing signal, the tracer continues running in normal
interpretation mode. Upon encountering a SignalStart, the tracing machine
either starts recording a new trace for unseen loops or starts executing a previ-
ously recorded trace for seen loops. Note that, in contrast to the basic scheme
described here, STRAF does wait for a loop to become hot before tracing it, by
counting how many times a SignalStart was sent for a particular procedure,
and tracing it once a threshold has been reached.
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Fig. 2: Transitions between execution modes of the tracing machine.

Trace Recording This mode is similar to the previous one, but the tracing ma-
chine records all actions communicated by the interpreter into a trace. The tracer
keeps recording these actions until the interpreter sends a new SignalStart for
the loop currently being recorded, as this indicates that one full iteration of the
loop has been completed. The recorded trace is then optimized via the optimize
hook of the interpreter and subsequently stored. Note that if the interpreter
executes an inner loop in the loop being traced, and therefore sends another
SignalStart for that inner loop, this entire loop will be unrolled in the trace.

Trace Execution A previously recorded trace is executed by consecutively
applying the actions it is composed of. When the end of the trace has been
reached, the tracer loops back to its beginning. At some point, a guard will fail
and execution of the trace will be aborted. The interpreter’s restart hook is then
called with the restart point of the guard that failed and the current program
state. Execution of the program is resumed under the normal interpretation
mode with the program state that is returned.

4 Evaluation

STRAF does not aim for top performance, but strives to facilitate experimen-
tation in the domain through the qualities of minimalism, comprehensibility
and extensibility. Our evaluation therefore focuses on whether it is possible to
easily extend the framework, e.g., with new trace optimizations or tracing mech-
anisms. To this end, we compose STRAF with the Scheme interpreter described
in Section [3.2] and implement several optimizations as well as extensions to the
previously described tracing mechanism. Section gives a high-level overview
of some trace optimizations and extensions to STRAF’s tracing mechanism. Sec-
tion describes and evaluates one of these optimizations in detail.

4.1 Extensions to STRAF

We have designed and implemented several trace optimizations, including a con-
stant folding [4], a type specialization [2] and a variable folding optimization.



These optimizations together span around 400 lines of codeﬂ Additionally, we
have also extended STRAF with a hot loop detection and a guard tracing mecha-
nism. The former enables STRAF to detect hot loops by counting the number of
SignalStarts sent for each procedure and only tracing procedures for which the
number of SignalStarts that were sent has crossed some threshold. The latter
makes it possible to not only trace procedures, but also to start tracing from
the point of a guard failure. When the guard fails again at some later point in
the execution, execution jumps to the trace that was recorded for this guard, in-
stead of resuming normal interpretation. This reduces the performance penalty
incurred for a guard failure, as execution can jump from one optimized trace
to another instead of returning to normal interpretation. These two additional
mechanisms were completed in only 100 lines of codeﬂ

4.2 Continuation Stack Optimization

We now describe and evaluate an additional trace optimization, the continua-
tion stack optimization, which eliminates all pairs of actions from a trace that
push and pop a continuation frame. This is sound because continuation frames
only affect the control flow, which is fixed for a particular trace. Care must be
taken, however, that no guard instruction is located between these actions. The
continuation stack must be kept up-to-date if normal interpretation might be
resumed after a guard failure. In practice, applying this continuation stack opti-
mization often reduces the length of a trace by up to 25%. The implementation
of this optimization spans about 50 lines of code, and was completed in about an
hour’s effort. We evaluate this optimization on a set of several programs ranging
from just two lines of code to around 240. These stem from the benchmark suite
included with the SCALA-AM framework on top of which STRAF is implemented.

Evaluation Figure [3| depicts the effectiveness of the continuation stack opti-
mization. It shows the number of continuation stack operations that are applied
throughout the execution of a benchmark as a fraction of the number of contin-
uation stack operations that are applied when the optimization is not applied on
the collected traces. This optimization drastically reduces the number of such
applications, by up to 95% in some cases.

We also evaluate the optimization in terms of the performance improvement
it brings to the compiler. We conducted this evaluation on an Intel 17-4870HQ
CPU at 2.50GHz with 6MB cache and 16GB of RAM. The machine ran 64bit
OS X 10.11.6 and Scala 2.11.7. Each program was executed thirty times, with
each run on a separate JVM; measurements only started after JVM warm-up
was completed. Figure [4| shows the median execution times, along with its 95%
confidence interval, of the programs when traces were collected and executed,

! https://github.com/mvdcamme/scala-am/blob/master/src/main/scala/
tracing/SchemeTraceOptimizer.scala

“’https://github.com/mvdcamme/scala-am/blob/master/src/main/scala/
tracing/SchemeTracer.scala
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Fig.3: Number of continuation stack operations executed, normalized with re-
spect to the unoptimized execution.

but not optimized. These numbers serve as the baseline with respect to which
the effectiveness of the continuation stack optimization is compared. Figure
shows the execution time of these same benchmarks, normalized to the baseline
execution time and with the 95% confidence interval included.
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Fig. 5: Median execution time of the benchmarks with just the continuation stack
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When the continuation stack optimization is applied, performance conclu-
sively improves in 5 out of 14 cases. In the remaining cases, it is likely that
the traces are either too short or the hot loop detection mechanism prioritized
tracing a loop which was afterwards not executed often enough. In both cases,
the overhead of tracing and optimizing negates any improvement made by the
optimization.

5 Related work

We reported an earlier version of the core principles behind the separation of the
tracer and the interpreter in prior work [I2]. That work relied on a formalization
and a Scheme implementation of the framework. This paper extends that work by
transposing the described ideas to the SCALA-AM framework [I0], by specifying
its implementation instead of offering a formal model, by describing optimization
strategies for traces and by evaluating STRAF via a set of benchmarks detailing
its performance.

Several widely-used trace-based JIT compilers have been deployed, such as
HotPath [§], TraceMonkey [7], Tamarin-Tracing [3]. However, these compilers
all execute one particular language and cannot be composed with a variety of
different interpreters.

The RPython framework is a meta-compilation framework that applies the
technique of meta-tracing [I]: instead of tracing the execution of a program
directly, a meta-tracer traces the execution of an interpreter while this inter-
preter executes the program. Similarly to STRAF, RPython thus enables language
implementers to provide a regular interpreter, annotated with certain hints to
guide tracing and optimization, to benefit from the advantages of trace-based



compilation without having to construct a dedicated JIT compiler for the lan-
guage. RPython greatly reduces the engineering effort required by language im-
plementers and is also successful in lifting the performance of the meta-traced
interpreter to the same order of magnitude than a dedicated JIT compiler [9].
However, the complexity of RPython and its focus on performance makes it
less suited for experimenting with novel trace recording or trace optimization
strategies. In contrast, STRAF focuses exclusively on providing a minimalistic
yet extensible framework that facilitates studying of and experimenting with
trace-based compilation strategies.

6 Conclusion and Future Work

We have introduced the STRAF framework for recording and optimizing execu-
tion traces of an interpreter it is composed with. For interpreters that satisfy a
limited set of requirements, this composition results in a trace-based JIT com-
piler. STRAF does not aim to generate trace-based JIT compilers that outperform
existing ones, but to facilitate further experimentation with trace recording and
trace optimization. To this end, it achieves low coupling between tracing mech-
anisms and language semantics.

STRAF is the embodiment of our earlier ideas on JIT compilation [12] into
the scALA-AM framework [10] for implementing interpreters as abstract machines
and for deriving static analyses from these interpreters. We are currently inves-
tigating whether trace-based JIT compilation can benefit from whole-program
static analysis, by providing information about the program that lies beyond the
boundaries of the trace. We have recently described an approach [I1] for using
a whole-program static analysis to find constant variables in a program and us-
ing this information to improve trace optimization: if the compiler knows that a
variable will remain constant throughout the program’s execution, it can replace
a lookup of the variable in the trace by its value as it was observed during trace
recording. Our approach enables detecting more constants than would be found
by other trace-based compilers because these compilers only consider the local
part of the program that is actually traced and do not look beyond the bound-
aries of this trace. By integrating STRAF into the SCALA-AM framework, we can
construct an abstract machine based interpreter for a language, derive a static
analysis from it by using the SCALA-AM framework and couple the interpreter to
the tracing machine. Using the same abstract machine for both functions makes
it possible to easily alternate between these functions, enabling us to perform
static analysis over parts of the program at run time. This in turn increases
precision of the static analysis, as we can include observed runtime values in the
program analysis instead of having to predict these statically. The minimalistic
but extensible implementation of STRAF facilitates these kinds of experiments
in hybrid trace optimizations.
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