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ABSTRACT

Developers frequently make code changes while programming,
such as deleting a line of code and renaming or introducing a
variable. These changes can be detected and logged, for example
by the IDE used by the developer. Logging changes is possible at
two levels: at the textual level or at the level of the abstract syntax
tree (AST) of the program. The logged changes, in both forms, are
useful because they can be used to build new software engineering
tools, such as static code analysers.

Plugins that log changes have already been developed for some
IDEs. However, so far, no change-logging plugin has been developed
for the DrRacket IDE, which supports the development of programs
written in Scheme-like languages such as R5RS Scheme and Racket.
To fill this gap, we have developed RacketLogger, a change-logging
plugin for DrRacket. RacketLogger logs changes both at the textual
level and at the AST level. To determine changes at the level of the
AST, we have adapted Negara et al’s algorithm to support Scheme
syntax. We have evaluated our plugin by creating a visualisation
for the logged changes to measure how well RacketLogger can be
used as a building block, and conducted a small-scale user study to
measure its usability.
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1 INTRODUCTION

During development, developers make multiple changes to their
program. Many types of changes can occur: inserting new code,
deleting a variable, applying a refactoring, and so on. To support
development, usually, changes are tracked with version control sys-
tems, such as git. The changes logged by version control systems
are unsatisfactory for certain applications, as they only provide
snapshots of committed code. This raises the need for a more im-
mediate tracking of changes, allowing changes between commits to
also be stored. As a solution, a change logger can be used: a change
logger logs all changes that happen during development. Having
a lower-level view on the changes enables new applications such
as programming pattern detection [1, 5, 9, 10, 14], and tools for
collaborative software development [3].

Different granularities and representations can be used for the
logged changes. A change logger is called fine-grained if it logs
changes at a detailed level, so that almost every interaction is logged.
Such fine-grained change loggers can reconstruct every intermedi-
ary state of the source code using the logged data [6, 14]. On the
other hand, change loggers that only log certain interactions are
called coarse-grained.

Changes can be logged at two different levels: at the textual level,
and at the level of the abstract syntax tree (AST). Logging changes
at the textual level means a change denotes how the text of the
program has changed. Such a logging mechanism may for example
track every character insertion. Logging changes at the AST level
means that changes are represented as operations on the nodes of
the AST (e.g., inserting, deleting, or updating a node) that connect
the AST at a given state of the program to the AST of the subsequent
state of the program. Changes logged at the AST level are a rich
source of information. They represent which subtrees of the AST
have been subject to change, information that can for example be
used by incremental program analyses [11, Ch. 7],[12, 13]. Of course,
changes at the textual level and changes at the AST level are related,
as one often needs the textual changes in order to compute the AST
changes. However, AST changes can be obtained only when an
AST can be constructed, that is, at points during the development
of the program where the program can correctly be parsed.

Multiple change-logging plugins have already been developed.
For example, efforts have been made by the research community to
provide change loggers for IDEs such as IntelliJ [1] and Eclipse [14].
However, to the best of our knowledge, there does not yet exist a
change-logging plugin for the DrRacket IDE.
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In this paper, we present RacketLogger, the first change-logging
plugin for the DrRacket IDE. RacketLogger —developed as part of
a Bachelor Thesis [8]— is implemented in the Racket language and
can log changes for any language that uses s-expression syntax —in
the remainder of this paper, we will focus on the Scheme language.
RacketLogger is a fine-grained change-logging plugin which logs
changes textually, representing the actual edits made to the source
code, and uses these changes to also infer changes at the AST
level, which are persisted as well. To this end, we have adapted the
change-inferencing algorithm of Negara et al. [6] to Scheme.

Section 2 discusses the two change representations adopted by
RacketLogger in more detail. We then show how RacketLogger
can be used as a building block to develop new tools by building
a change visualiser (Section 3) which we evaluate by means of a
user study (Section 4). Other potential usages of RacketLogger are
discussed in Section 5. In Section 6, we review related work on
change-logging. We conclude in Section 7.

2 REPRESENTING PROGRAM CHANGES

In this section, we discuss how changes to Scheme programs can
be represented. RacketLogger stores the changes at a textual level
but is also able to infer the AST node operations from these tex-
tual changes. First, in Section 2.1, changes at the textual level are
described, before presenting the changes at the level of the AST,
which we refer to as AST node operations, in Section 2.2.

2.1 Textual Changes

At the lowest level, RacketLogger logs all meaningful interactions
with the DrRacket IDE. For that reason, and similar to other change-
logging plugins [14], RacketLogger relies on a hierarchical represen-
tation of textual changes. The use of a hierarchy enables reasoning
about the changes at different levels of abstraction. The hierarchy
of changes used by RacketLogger is represented in Figure 1.

extends’ extends

Textual Change Interaction Change
extends extends extends €xtends

extends
On Open Change On Parsable Change
extends On Close Change

On Save Change

Figure 1: The change hierarchy used by RacketLogger

Changes are divided into two broad categories: textual changes
and interaction changes. Textual changes impact the contents of
the source code file, i.e., these are text inserts and text deletions.
Interaction changes are non-textual changes, and represent inter-
actions between the programmer and the IDE, such as opening,
saving, and closing a file. They provide a context for the textual
changes, such as in which file the textual changes were made. An
on parsable change is logged whenever the code reaches a parsable
state. This type of change is useful to trigger the inferencing of AST
node operations, which relies on the code being in a parsable state.
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2.1.1  Persisting changes. The textual changes logged by Racket-
Logger are persisted to a file, where each line corresponds to one
change. An example log file is given in Listing 1. Each change is rep-
resented as a tagged list, where the first element, the tag, indicates
the type of the represented change, and the remaining elements
contain information about the change itself. For example, text in-
sert changes contain the text that has been inserted and the offset
at which the text was inserted. Storing changes as a tagged list is
particularly useful in Racket, as this representation can easily be
parsed and manipulated in Racket itself.

Listing 1: Example of persisted textual changes.

(text-insert ")" 39)
(on-parsable)
(on-close)

2.1.2  Merging changes. Logging changes at each keystroke is likely
to result in large log files. When multiple characters are inserted or
deleted at the same place in the source code, it is possible to merge
these changes into a single change [6, 14]. Consider the addition of
the character ’a’ in a program represented by (text-insert "a"
), followed by the addition of the character ‘n’ (text-insert
"n" 1). These two changes can be merged into a single change,
(text-insert "an" 0).

RacketLogger automatically merges changes when possible, that
is, when the following conditions are met:

o The textual changes must be of the same type, e.g., a text in-
sertion change cannot be merged with a text deletion change.

o The changes have to be made consecutively in time, to avoid
losing information about how changes were interleaved, e.g.,
two changes cannot be merged if another change has been
made in between.

e Changes need to be made consecutively in space. This is
the case if the second change starts at the offset where the
first change has stopped. This means that if a character is
added somewhere in the file, and then a character is added
somewhere unrelated in the file, these two changes should
not be merged.

Note that merging is performed transitively: a change that is the
result of a previous merge can become part of a merge again, and
hence, any number of changes can become merged into a single
change as long as the above conditions are fulfilled.

As an example, consider Figure 2 which represents two textual
changes, (text-insert "ab" x) and (text-insert "c" x+2).
Note that when we add the offset of the first change, x, to the
length of its text, then the offset of the second change is obtained.
As the second change starts at the offset where the first change has
stopped, RacketLogger merges them. Similarly, two consecutive
textual deletions can also be merged. In this case, the first change
needs to be (text-delete "c" x+2) and the second change needs
to be (text-delete "ab" x).

2.2 AST Changes

Storing changes at the textual level may be too fine-grained or
impractical for applications to work with. For this reason, Racket-
Logger is able to infer AST changes from the textual changes when
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Figure 2: Two textual changes to be merged

the program is in a parsable state (so that an AST can be obtained).
AST changes describe how the AST has changed from one parsable
state to the next, and are computed as soon as the AST comes to a
new parsable state. To see this, consider Figure 3, which exemplifies
the derivation of AST changes from textual changes. Blue nodes
denote node update operations, meaning that the contents of the
node has been updated, and green nodes denote node insert opera-
tions, meaning that nodes are inserted. When no node operations
are present in a subtree, this means that the subtree has remained
unchanged between two parsable states. For example, in Figure 3,
consider the subtree encircled in orange. Clearly, the AST changes
are a more rich and interesting source of information — which can
be used by program analyses run by the IDE for example — than
the corresponding textual changes — which give no information on
what nodes have been updated, inserted, deleted, or have remained
unchanged.

old AST

Qdeflne (abs x) (if (> x 0) X ( x))D

I

Q (|f(>x0)x( x))

@) © (>x0) @ R
textual changes:
(insert "(not " 20)
(insert ")" 32)
(delete "x" 28) new AST
(insert "y" 28) Imm— S——

@f{;e (abs x) (if (not (>y 0)) X (- x\))D

L N

D) B e
N

not (>y0)

Figure 3: AST changes between two parsable states, showing
node updates (blue) and node inserts (green). An unchanged
subtree has been encircled in orange.

2.2.1 An Analogy for AST Change Inferencing Algorithms. AST
changes are inferred from the last parsed AST before the changes,
the current parsed AST, and the textual changes that connect them.
To understand how the change-inferencing algorithm for AST oper-
ations works, we now first provide an intuitive analogy: the game
of spot-the-difference, often played by children, and exemplified in
Figure 4. The goal of the game is to find differences between two
images. Analogously to the game, a change-inferencing algorithm
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finds the differences between two ASTs, in terms of node operations.
More similarities emerge between inferencing algorithms and the
game if we assume that the right image follows from the left image.
This assumption allows the left image to play the role of an old
AST, whereas the right image can play the role of a new AST. The
deletion of an item in the left image corresponds to a node deletion
operation in the old AST, and is indicated in black in the figure.
Notice that the deleted item is present only in the first image, and
similarly, a node deletion occurs only at a node of the old AST as it
cannot be shown in the new AST. The insertion of an item into the
second image corresponds to a node insertion operation into the
new AST, and is indicated in blue. The inserted item is present only
in the second image, and similarly, a node insertion occurs only
at a node of the new AST. Finally, some elements that are present
in both images are updated, which corresponds to node update
operations. The updated elements are present in both figures, and
similarly, updated nodes come in pairs: one in the old AST, one in
the new AST.

Figure 4: Example of a spot-the-difference game. Blue circles
mark updates to a part of the figure, green circles mark addi-
tions, and black circles mark deletions.

2.2.2  High-level overview of the Change-Inferencing Algorithm used
by RacketLogger. To derive AST changes made to a Scheme program
from textual changes, we have adapted the algorithm for the infer-
encing of AST node operations of Negara et al. [6]. This algorithm
returns node operations (insertions, deletions and updates), given
the old AST, new AST, and the corresponding textual changes that
represent the changes to code when going from the old AST to the
new AST. We first give an overview of the algorithm developed
by Negara et al. Afterwards, we discuss how it was adapted for
Scheme.

To generate node changes, the algorithm first establishes the root
of the changed subtree, called the common covering node, which is
present in both the old AST and the new AST. Finding it is of interest,
since the rest of the algorithm can then operate on this subtree,
saving computational efforts. Since such a common covering node
represents the root of the changed subtree, it encloses all changes. In
general, nodes are found by finding the traversal path from the root
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of the AST to that node. Hence, finding the common covering node
boils down to finding its path. The path is found in two steps. First,
the algorithm looks for local covering nodes in both ASTs, these are
the innermost nodes that enclose all textual changes. Second, the
path to the common covering node is found by taking the common
part of the paths to local covering nodes.

When the algorithm has found the common covering node, it
starts matching descendants of the common covering node. The
matching of nodes denotes the fact that the new AST node was
already present in the old AST. Nodes are matched in two ways:

o The algorithm matches outliers, i.e., nodes that have not been
affected by any changes. Hence, outliers remain unchanged
and no node operations need to be generated.

o The algorithm matches yet unmatched nodes that have the
same traversal path from their respective roots. For these
nodes, update operations need to be generated.

Lastly, the algorithm generates node insert, node delete, and node
update operations. For every unmatched descendant of the common
covering node in the old AST, a delete operation is generated. For
every unmatched descendant of the common covering node in
the new AST, an insert operation is generated. For every pair of
matched nodes whose content has changed, an update operation is
generated. Notice how this generation of operations is consistent
with our previous analogy.

2.2.3  Application to Scheme. Now that we have given an overview
of the original algorithm developed by Negara et al. [6], we explain
how we have adapted it to Scheme. First, we have noticed that the
algorithm must generate more update operations. More precisely,
an update operation must be generated for every pair of ancestors
of the common covering node. The original algorithm generates
operations only for nodes below the common covering node. Since
the common covering node in the old AST and the new AST share
their traversal paths, this means that they have an equal number
of ancestors, who match with each other. These nodes enclose all
changes since they enclose the common covering node, so they
must have changed. Thus, an update operation must be generated
for each pair of nodes on the path from the root of the AST to the
common covering node.

Second, we have implemented low-level logic that enables the

original algorithm to decide when a node is affected by a change.

Note that when the algorithm matches outliers, it must be able to
tell if a change affects a node. We have implemented this check
for Scheme, and have noticed some peculiarities that relate to the
syntax of the language. Consider Figure 5, where the code at the
top corresponds to an identifier enclosed within parentheses and
the code at the bottom corresponds to a simple identifier. Now,
consider a textual insertion that occurs to the right of these nodes,
indicated by the arrow. If a change starts at this offset, we see that
the top node is untouched. However, the node representing the
identifier node might be touched, as the name of the identifier may
be made longer: when the added code does not start with a space
or a parenthesis, the identifier is affected. Similar rules are required
for insertions that occur at the beginning of the code represented
by a node.

Kursun and Van der Plas, et al.

(var)\;l
varg

Figure 5: A bracketed S-exp, and an identifier S-exp. The
arrow indicates the offset of a textual insertion

2.2.4  RacketLogger’s Inferencing Algorithm in Pseudocode. Algo-
rithm 1 shows the pseudocode for RacketLogger’s AST node opera-
tions inferencing algorithm. The input to the algorithm is the old
AST, the new AST, and the textual changes. These are the textual
changes that took the code from the 01dAST to the newAST. The
output to the algorithm is a set of AST node operations, ASTops.
These operations are update, insert, and delete operations. Recall
that our algorithm is based on the state-of-the-art algorithm used
by Negara et al. [6]. We have highlighted the parts of the algorithm
which we adapted to Scheme. We will now discuss the algorithm
in more detail.

First, two variables are initialised to the empty set, ASTops, which
will store the inferred AST node operations (line 3), and matches,
which the algorithm uses to store pairs of matched nodes between
the old and new AST (line 4). Then, the traversal path to the common
covering nodes is found, and, using this path, the common covering
nodes are obtained from both ASTs (lines 5-7).

Next, the algorithm matches outliers, i.e., the nodes that have not
been affected by any change. Every descendant node of the common
covering node in the old AST is checked against the changes. A
change does not affect a node if the code that the node represents
is completely before the change, or completely after it. If the offset
of the node is before the change, the change does not impact the
offset of the node either. However, if the offset of a node is after
the offset of the change, it alters the offset of the node. Changing
the offset of a node can also be seen as shifting the node to the left
or to the right. Text insertions shift the offset by the length of the
inserted text, whereas text deletions shift the offset by the opposite
number (- length of deleted text). These offset shifts are computed
by the function getChangeOffset and accumulated in a variable
deltaOffset (line 12). If no changes affect the old AST node, then
the algorithm looks for its matching node in the new AST by using
deltaOffset (line 14), and the matched pair of nodes is added to
matches (line 15).

In the next step, the algorithm matches nodes that are still un-
matched but have the same traversal path starting at the root of
their ASTs. The algorithm first loops over all the old AST nodes
that are descendants of the oldCoveringNode and that have not
yet been matched (line 18). For each such node, the traversal path to
this node is computed and the algorithm attempts to find the node
in the new AST on that path (lines 20-21). This pair of nodes is then
matched together if the new AST node is also not yet matched (line
22). In case no node can be found, then there cannot be a match.

Next, the algorithm starts generating node operations. For each
matched node, the algorithm generates an update operation if the
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code contained in the old AST node is different from the code con-
tained in the matching new AST node (lines 25-27). Then, the algo-
rithm generates an update operation for all pairs of corresponding
ancestors of the common covering nodes, as explained in Section
2.2.3. Lastly, a delete operation is generated for each unmatched
descendant of the common covering node in the old AST (lines
31-33), and an insertion operation is generated for each unmatched
descendant of the common covering node in the new AST (lines
34-36).

3 EVALUATION: VISUALISING CHANGES
WITH RACKETVIZ

We have evaluated RacketLogger by using the AST changes it cap-
tures to create an interactive visualisation of the changes it has
logged. To this end, we have built a second plugin for DrRacket,
RacketViz. RacketLogger supports registering a callback function
which will be called each time a set of node operations is inferred.
RacketViz plugs into RacketLogger through this callback. Listing
2 shows how such a callback can be registered. RacketLogger pro-
vides five arguments to the callback: the old AST, the new AST, the
inferred node operations, the changes connecting both ASTs, and
an object which indicates in which tab the changes occurred (in
DrRacket, a developer can use multiple tabs simultaneously). Hence,
the first four arguments provide all information on the changes,
both textually and at the level of AST nodes. We refer back to Figure
3 for illustrative values of the first four arguments.

Listing 2: Registration of the callback function of RacketLog-
ger.

(set-AST-inference-callback!
(lambda (old-ast new-ast inferred-node-ops
changes-obj defs-text)
Sea))

RacketViz implements a visualisation of the current AST of the
program, which is updated according to the changes made by the
developer whenever the program reaches a parsable state. To this
end, RacketViz uses the information on AST node changes provided
by RacketLogger, and creates a visualisation that is encoded in the
dot language, so that it can be converted into an image by GraphViz
[2]. This image is shown to the user in the a frame within the
DrRacket editor, and the image is updated every time when AST
node operations are inferred. An example image is shown in Figure
6.

Since RacketViz is provided with the inferred AST node opera-
tions, it can colour the nodes of the new AST according to these
operations: update operations are coloured blue, and insert oper-
ations are coloured green. RacketViz does not show the old AST,
because this would be cumbersome to do within the small DrRacket
frame. Hence, delete operations cannot be visualised, as the deleted
nodes are no longer present in the new AST. However, it is en-
tirely possible to also generate images for the old AST, where delete
operations could be shown.

Finally, when the programmer changes to another tab, RacketViz
loads the image for the corresponding tab. This can simply be
retrieved from memory, where RacketViz stores the last generated
image for every tab.

ELS’21, March 21-22, 2022, Genova, Italy

Algorithm 1: Inferencing algorithm for AST node opera-
tions.

1 affects(change, node, offset) returns true if a change affects a node,
i.e., if the change is made within the boundary of the node.

2 getCommonCoveringPath(oldAST, newAST, changes) returns a list
describing the path to the common covering node, by finding a local
covering node in both oldAST and newAST, and extracting their
common path.

input :The old AST, 0ldAST, the new AST, newAST, and the

textual changes, changes.

output:A set of AST node operations, ASTops.

ASTops := @; // AST node operations.

matches := @; // Pairs of matched nodes.

[N

'

)

coveringPath :=

getCommonCoveringPath(oldAST, newAST, changes);
oldCoveringNode := getNode(0ldAST, coveringPath);
newCoveringNode := getNode(newAST, coveringPath);
// Match outliers.

foreach oldNode € getDescendants(oldCoveringNode) do
9 deltaOffset := 0;

=N

=

3

10 foreach change € changes do

1 if affects(change, oldNode, deltaOffset) then
Continue foreach line 8 ;

12 else deltaOffset := deltaOffset +

getChangeOffset(change, oldNode, deltaOffset);

13 end

14 if 3newNode € getDescendants(newCoveringNode) :
getOffset(oldNode) + deltaOffset = getOffset(newNode) then
15 ‘ matches := matches U (oldNode, newNode);

16 end

17 end

// Match same-path nodes.
8 foreach oldNode € getDescendants(oldCoveringNode) do
19 if oldNode ¢ getOldNodes(matches) then

=

20 oldPath := getNodePath(oldNode, 0ldAST);
21 newNode := getNode(newAST, oldPath);
22 if newNode # null and

newNode ¢ getNewNodes(matches) then
matches := matches U (oldNode, newNode) ;
23 end

24 end
// Infer node operations.
25 foreach (oldNode, newNode) € matches do
if getText(oldNode) # getText(newNode) then
ASTops := ASTops U makeUpdateOp(oldNode, newNode) ;

2

=

27 end
28 foreach (oldParent, newParent) €
parentsOnPath(coveringPath, oldAST, newAST) do
29 ‘ ASTops := ASTops U makeUpdateOp(oldParent, newParent);
30 end
foreach oldNode € getDescendants(oldCoveringNode) do
if oldNode ¢ getOldNodes( matches) then
ASTops := ASTops U makeDeleteOp(oldNode);

3

-

32

33 end
34 foreach newNode € getDescendants(newCoveringNode) do
if newNode ¢ getNewNodes(matches) then

ASTops := ASTops U makelnsertOp(newNode);

35

36 end
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new AST

(begin (+ 12 (/5 3) (* 2 3)))

\

begin (+12 (/53) (*23))
+ 1 2 (/5 3) (* 23)
/ 5 3 * 2 3

Figure 6: AST visualisation by RacketViz. Node updates are
shown in blue, whereas node inserts are shown in green.

4 USER STUDY

To evaluate the usefulness of RacketLogger as a building block for
any application that requires information about changes, we have
conducted a user study. RacketViz, a tool enabled by RacketLogger,
was installed on the computers of five participants, all students in
computer science at the bachelor level, using DrRacket daily. Then,
they were given about a week to use RacketViz, after which we
asked them a series of closed and open questions regarding their
experience using RacketViz.

Table 1 lists the closed questions of our user study and the re-
sponses of the five participants. The first two questions were used to
evaluate the past experience of the participants with DrRacket and
Scheme and to know for how much time the participants have used
the IDE with RacketViz installed. Next, participants were given a
series of statements, for which they had to indicate how much they
agreed with each on a scale from 0 to 10.

The three last columns of the table in Table 1 summarise the
results of our user study. We see that the participants were already
familiar with the DrRacket IDE, having 2 to 4 years of experience
using it. The second question asked how intensively they used
DrRacket whilst the plugins (RacketViz and RacketLogger as its
dependency) were installed. In total, the users have reported using
it for 9 hours.

The remaining questions asked about their user experience with
RacketViz, where participants rated propositions on a scale from
0 to 10, where 0 indicates a negative user experience, whereas 10
indicates a positive user experience. By looking at all the answers,
we see that the users had a positive experience with the plugins. In
short, the participants found that DrRacket kept working smoothly,
they managed to easily inspect the AST, they found the provided
information quite useful and easy to understand, and that the shown
AST was quickly updated after changes.

Alongside our closed questions, we also asked the participants
some open questions. First, we asked whether any errors occurred
whilst using the plugins. Two errors were reported, explaining
that the AST is not shown when multiple frames (not tabs) of the
DrRacket IDE are open. Second, we asked what else our participants
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would like to see in the visualisation. We explicitly encouraged wild
ideas from our participants. Three participants came up with an
idea:
e To add zoom buttons to the AST visualisation.
o To highlight the AST nodes corresponding to run-time er-
rors.
o To highlight the code that was added from one parsable state
to the next using a different colour in the editor.

We find that the third idea is particularly interesting since it could
make great use of the detailed data about changes provided by Rack-
etLogger. As a third open question, we asked participants whether
they had any additional remarks. However, no participant had ad-
ditional remarks. We plan in the future to extend this preliminary
evaluation to evaluate in details the performance, correctness, and
usability of RacketLogger and RacketViz.

5 OTHER POTENTIAL APPLICATIONS OF
RACKETLOGGER

In this Section, we discuss other applications that could be built on
top of the change information provided by RacketLogger. Recall
that RacketLogger provides information about textual changes as
well as AST changes.

Empirical studies. Developers might be changing complex Scheme
expressions more often than straightforward ones. It could also be
the case that developers change procedure declarations more often
than class declarations. By using the information provided by Rack-
etLogger, and gathering a large and diverse sample of programmers,
one could shed light into these and related matters. Declarative
change query languages [9, 10] have been developed to facilitate
such empirical studies. One could also mine for patterns in the cap-
tured changes [5], which can be indicative of refactoring operations
for which automated tool support ought to be provided.

Incremental program analysis. Many IDEs already have some
form of built-in program analysis to support software development.
For example, Intelli] employs a data flow analysis [4]. When soft-
ware changes, these analyses have to be rerun to update their results.
Clearly, this is a frequent event within an IDE, therefore making
it impractical to run a full software analysis upon every change
to the code base. As a remedy, incremental program analyses can
be used, which update the analysis results based on the changes
made to the code [11, Ch. 7],[12, 13]. This makes employing static
analysis practical, as an incremental update of the analysis results
takes less time than a full analysis of the codebase.

For an incremental analysis to be efficient however, it must have
an overview of the changes, allowing the analysis to find the parts
of its result that need invalidation and recomputation. In light of
this, RacketLogger could be used to provide these changes, and
therefore to bring incremental static analysis to DrRacket in the
future.

6 RELATED WORK

In this section, we discuss some related work on change logging.
Yoon et al. developed Fluorite [14], an event-logging (or change-

logging) plugin for the Eclipse IDE. It logs all low-level events (or

changes) that occur in the editor using an XML format. This format
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Mean Min Max

How familiar are you with DrRacket/Scheme (in years) 3 2 4
How intensively have you used DrRacket after installing RacketViz (in minutes) 108 60 120

Answers on a scale of agreement from 1 to 10

Does DrRacket works as smoothly as usual when running RacketViz? 9 8 10
Could you easily inspect the AST? 9.6 9 10
Do you find the provided AST information useful? 8.4 8 10
Did the AST shown in DrRacket update quickly when the code was parsable? 9 8 10
Are the inferred node operations clear to you? 8.2 8 9

Table 1: Questions from our user study of RacketViz. The last 5 questions are answered on a scale of agreement from 0 (indicating
a negative user experience) to 10 (indicating a positive user experience).

allows the logged textual changes to be used by other plugins. Flu-
orite only logs textual events, merging changes whenever possible.
It does not capture AST changes.

Omori et al. [7] developed OperationRecorder, a change-logging
plugin for Eclipse. The goal of this plugin is to more deeply un-
derstand code evolution. Traditionally, code evolution is studied
by using snapshots in repositories, but the authors found that this
traditional way of studying code evolution is incomplete since in-
termediate changes in the editor are lost. OperationRecorder uses
its own inferencing algorithm, that also relies on textual changes.

Negara et al. [6] have developed CodingTracker, a change-logging
plugin for Eclipse. Its main goal is to study software evolution in a
more complete and precise way. The tool has been used to answer
five research questions. One of the questions served as motivation
for RacketLogger: “How much code evolution data is not stored
using Version Control (VC)?”. By performing a study with 15 partic-
ipants, across 2000 commits and 23002 committed files, they found
that on average 37 percent of changes never reach version con-
trol. This finding motivates change loggers since they give a more
complete picture of code evolution than version control reposito-
ries. Negara et al. [6] have also implemented a state-of-the-art AST
node operations inferencing algorithm, which we have adapted to
Scheme syntax.

Hattori and Lanza have developed Syde, a change-logging plugin
for Eclipse. Syde is developed as a tool for collaborative software
development. For example, changes are broadcast to all team mem-
bers of a project, and real-time visualisations of the evolution of
the system.

Beller et al. [1] have developed WatchDog, a change-logging
plugin for Eclipse, Intelli], and Visual Studio Code. By using Watch-
Dog, Beller et al. performed a large-scale study of the habits of
developers whilst testing. Their results have shed light on how
several activities of developers relate to each other. For example,
they found that developers often overestimate the time they spend
on testing software.

The most notable difference between existing work and Rack-
etLogger is the compatible IDE. To the best of our knowledge,
RacketLogger is the first change-logging plugin for DrRacket. Rack-
etLogger also has common DNA with other change loggers: it
logs textual changes [6, 7, 14], merges changes [6, 14], and uses
CodingTracker’s state-of-the-art AST node operations inferencing
algorithm [6].

7 CONCLUSION

In this paper, we have presented RacketLogger, the first change-
logging plugin for the DrRacket IDE. We explained that RacketLog-
ger uses a hierarchy of changes, and merges changes, similar to
many state-of-the-art change-logging plugins [6], and we discussed
AST changes. RacketLogger required adaptation of an existing state
inferencing algorithm in order to support Scheme-like languages.
We have explained how the nested structure of Scheme code im-
plies node update operations at matching ancestors of the common
covering nodes. We have also introduced the challenges that had to
be overcome in determining whether an s-expression is affected by
textual changes. Finally, we have shown how RacketLogger may
be used to build other plugins that require detailed information
about changes. To that end, we implemented a change visualiser,
RacketViz, which shows the AST of the program as it evolves in a
DrRacket frame. We have conducted a preliminary evaluation of
RacketViz through a user study, indicating that it was well received
by the participants.
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