
Static Taint Analysis of Event-driven Scheme Programs

Jonas De Bleser
Vrije Universiteit Brussel
jdeblese@vub.ac.be

Quentin Stiévenart
Vrije Universiteit Brussel
qstieven@vub.ac.be

Jens Nicolay
Vrije Universiteit Brussel
jnicolay@vub.ac.be

Coen De Roover
Vrije Universiteit Brussel
cderoove@vub.ac.be

ABSTRACT
Event-driven programs consist of event listeners that can be
registered dynamically with different types of events. The
order in which these events are triggered is, however, non-
deterministic. This combination of dynamicity and non-
determinism renders reasoning about event-driven applica-
tions difficult. For example, it is possible that only a partic-
ular sequence of events causes certain program behavior to
occur. However, manually determining the event sequence
from all possibilities is not a feasible solution. Tool support
is in order.

We present a static analysis that computes a sound over-
approximation of the behavior of an event-driven program.
We use this analysis as the foundation for a tool that warns
about potential leaks of sensitive information in event-driven
Scheme programs. We innovate by presenting developers
a regular expression that describes the sequence of events
that must be triggered for the leak to occur. We assess
precision, recall, and accuracy of the tool’s results on a set
of benchmark programs that model the essence of security
vulnerabilities found in the literature.

CCS Concepts
•Theory of computation→Program analysis; •Security
and privacy → Software security engineering;

Keywords
Taint Analysis, Abstract Interpretation, Static Program Anal-
ysis, Security Vulnerability, Event-driven Programs

1. INTRODUCTION
Event-driven programs are widely used on both client and

server side where external events and their corresponding
event listeners determine the program behavior. Analyzing
such programs is hard because the order in which events
occur is non-deterministic and control flow is not explicitly
available. These problems negatively impact the ability of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

10th European Lisp Symposium ELS’17, Brussels, Belgium
c© 2017 ACM. ISBN 978-2-9557474-1-4.

DOI:

tools to detect security vulnerabilities. Among these vul-
nerabilities, leaks of confidential information and violations
of program integrity remain a continuously growing prob-
lem [22].

Static taint analysis has been proposed to detect those
vulnerabilities [3, 6, 8, 10, 18]. For event-driven programs,
the state of the art in static taint analysis either completely
ignores events or simulates them in every possible order.
Another limitation of the state of the art is the lack of infor-
mation about which event sequences cause a security vulner-
ability to occur. As a result, there is still little tool support
available to precisely detect such defects.

In this work, we present a static taint analysis to com-
pute the flow of values through event-driven programs in
which program integrity or confidentiality of information is
violated. We model a small event-driven Scheme language,
SchemeE , with an event model similar to JavaScript and
support for dynamic prototype-based objects. Through ab-
stract interpretation [4], we compute an over-approximation
of the set of reachable program states. From this set, we
identify security vulnerabilities and summarize event sequences
causing these vulnerabilities. This paper makes the follow-
ing contributions:

• We describe an approach to static taint analysis that is
able to detect security vulnerabilities in higher-order,
event-driven programs.

• We summarize event sequences leading to security vul-
nerabilities by means of regular expressions. This pro-
vides the developer with a description of the events
that have to be triggered for a security vulnerability
to occur, thereby facilitating the correction of the vul-
nerability.

• We investigate the use of k -CFA [15] as context sen-
sitivity in event-driven programs. We measure the in-
fluence on the results of our analysis and how it affects
the number of false positives.

2. TAINT ANALYSIS
A taint analysis is capable of detecting flows of values in a

program that violate program integrity or confidentiality of
information. Taint analysis defines such data-flow problems
in terms of sources, sinks and sanitizers. A source is any
origin of taint (e.g., user input or private information). A
sink is any destination where taint is not allowed to flow to
(e.g., database query or log utilities). A sanitizer converts
taint in such a way that it is no longer considered to be

tainted (e.g., by stripping tags or by encryption). A security
vulnerability occurs whenever taint flows from a source into
a sink, without flowing through a sanitizer.

The program in Listing 1 contains a security vulnerability
that leaks a password to the screen. The variable password

is the source, as it is an origin of confidential information.
The function display exposes its argument to the screen
and is therefore a sink. The function encrypt is a sanitizer
as it converts its argument to an encrypted equivalent that
is allowed to be printed on screen. In this example, a leak of
confidential information occurs whenever the second branch
of the if-statement is executed. The goal of a static taint
analysis is to detect this violation without executing the
program.

1 (define password ’secret)
2 (define encrypt (lambda (x) (AES x)))
3 (if (> (length password) 10)
4 (display (encrypt password))
5 (display password))

Listing 1: Example of a security vulnerability that leaks
the password to the screen.

2.1 Motivating example
To illustrate the problem we are addressing in this paper

consider Listing 2, which exemplifies an event-driven pro-
gram containing a security vulnerability. This example is
written in SchemeE (Section 3) and represents a form that
contains a text input listening to the keypress event, to-
gether with two buttons that respectively listen to the clear
and save events.

1 (define o (object))
2 (define key #f)
3
4 (add-event-listener o ’keypress
5 (lambda (e) (set! key (source ’secret))))
6 (add-event-listener o ’clear
7 (lambda (e) (set! key #f)))
8 (add-event-listener o ’save
9 (lambda (e) (sink key)))

Listing 2: An event-driven program consisting of a secu-
rity vulnerability that leaks confidential information.

We define three event listeners (lines 5, 7, and 9) that
manipulate or access the variable key defined on line 2. The
first event listener (line 5) sets the variable key to the value
secret. This value represents confidential information and
therefore is tainted. We indicate this by using the special
form source, which returns its argument but annotates it
with a taint flag behind the scenes. The second event listener
(line 7) sets variable key to the untainted value #f. The third
event listener (line 9) leaks the contents of key (e.g., prints
it to the screen). This is indicated by means of the special
form sink, which raises an error if its argument is tainted.

Each event listener is registered (lines 4, 6, and 8) on ob-
ject o through the special form add-event-listener. This
special form takes three arguments: the object on which the
event listener is registered, the event that triggers the lis-
tener to be executed, and the function to execute when the
event occurs.

Registration enables the event listeners to become exe-
cutable, and in Listing 2 some execution orders may lead to
security vulnerabilities. This is the case whenever a key-

press event is immediately followed by a save event. By
taking into account the execution of event listeners, there

now exists a flow between the source (line 5) and the sink
(line 9) through variable key (line 2). This flow causes the
tainted value secret to be leaked.

However, information about the execution of event listen-
ers is not explicitly available from the source code, making
the flow between event listeners implicit. A naive abstract
interpretation of event-driven programs that ignores the ex-
ecution of event listeners will not detect that there is a flow
from and to variable key from every event listener. As a
result, such an analysis would not detect the leak of confi-
dential information in Listing 2. We tackle this problem in
the following sections.

3. AN EVENT-DRIVEN FLAVOR OF SCHEME
We start by introducing SchemeE , the language on which

we perform static taint analysis. SchemeE is a small Scheme
language that supports higher-order functions, objects, events,
and taint. The syntax of the language is shown in Figure 1.

var ∈ V ar = a set of identifiers

num ∈ N = a set of numbers

str ∈ String = a set of strings

s ∈ Symbol = a set of symbols

b ∈ B ::= #t | #f

l ∈ Lambda = (lambda (var) ebody)

e ∈ Exp ::= var | num | b | l | str | s

| (ef earg)

| (set! var eval)

| (if econd econs ealt)

| (letrec ((var e)) ebody)

| (source eval)

| (sanitizer eval)

| (sink eval)

| (object)

| (define-data-property eobj sname eval)

| (define-accessor-property eobj sname eg es)

| (get-property eobj sname)

| (set-property eobj sname eval)

| (delete-property eobj sname)

| (event sevent)

| (add-event-listener eobj sevent elistener)

| (remove-event-listener eobj sevent elistener)

| (dispatch-event eobj earg)

| (emit eobj earg)

| (event-queue)

Figure 1: Grammar of SchemeE .

3.1 Objects and Properties
SchemeE supports Javascript-like objects consisting of prop-

erties that are maintained in a map relating property names
to their respective values. There exist two kinds of proper-
ties in JavaScript: data and accessor properties. The former
associate property names with values, while the latter asso-
ciate them with a getter and setter function (i.e., allowing
side-effects). The special form object instantiates an object
without any properties. Accessing a property which does
not exist on an object yields #f as default value. Proper-
ties can be added (define-(data|accessor)-property), ac-
cessed (get-property), deleted (delete-property), or mod-
ified (set-property) at run time.

3.2 Events and Event Listeners
Event listeners (also referred to as event handlers or call-

backs) are functions that are registered for a specific event
on an object and are executed whenever such an event is
dispatched as a result of an action (e.g., clicking a button or
pressing a key). In general, event-driven programs do not
terminate because they listen for events indefinitely (i.e.,
they enter an event loop). The behavior of event-driven
programs is largely determined by the execution of event
listeners.

In SchemeE , event listeners are added and removed by
the special forms add-event-listener and remove-event-

listener, respectively. New events can be created through
the special form event, which takes a symbol denoting the
event type as argument.

Listing 3 illustrates SchemeE ’s support for objects and
events. Two properties are defined on object o: data prop-
erty var (line 2) and accessor property result (line 3) with
its getter and setter functions (lines 4 and 5). Accessing
property result will return the value of var multiplied by
2, while setting it will cause var to be changed to the given
value.

Two event listeners for events modify and resets are reg-
istered on object o (lines 7 and 9). The former event listener
(line 7) modifies the accessor property result to become
2. The latter resets the property var so that its value be-
comes 0. To simulate events directly, we use the special
form dispatch-event. This special form dispatches events
synchronously and represents the occurrence of a particular
event on an object at that specific moment in time in the
program. As a result, the corresponding event listeners on
the target object are immediately executed.

First, a modify event is dispatched (line 12) and causes
the value of var to become 2. Accessing result on the
next line will therefore return 4. Second, a reset event is
dispatched (line 15) and causes the value of var to become 0,
as indicated on line 16. Third, the event listener registered
for modify event is removed on line 18. Any event that
occurs after the removal has no effect. This is reflected by
the value of result, because accessing it on line 20 still
results in the value 0 instead of 4. Finally, the property
var is removed from the object on line 22, and accessing it
returns the default value #f.

1 (define o (object))
2 (define-data-property o ’var 0)
3 (define-accessor-property o ’result
4 (lambda () (* 2 (get-property o ’var)))
5 (lambda (x) (set-property! o ’var x)))
6
7 (define modify (lambda () (set-property o ’result 2)))
8 (add-event-listener o ’modify modify)
9 (define reset (lambda () (set-property o ’var 0)))

10 (add-event-listener o ’reset reset)
11
12 (dispatch-event o (event ’modify)) ; var = 2
13 (get-property o ’result) ; 4
14
15 (dispatch-event o (event ’reset)) ; var = 0
16 (get-property o ’result) ; 0
17
18 (remove-event-listener o ’modify modify)
19 (dispatch-event o (event ’modify)) ; NOP
20 (get-property o ’result) ; 0
21
22 (delete-property o ’var)
23 (get-property o ’var) ; #f

Listing 3: Example program illustrating the features of
SchemeE .

3.3 Taint
Besides objects and events, SchemeE features special forms

to explicitly define sources (source), sinks (sink), and san-
itizers (sanitizer). Listing 4 shows how to use these to
define that variable v is a source, function display is a sink,
and encrypt is a sanitizer.

1 (define v (source 1))
2 (define display (lambda (x) (sink x)))
3 (define encrypt (lambda (x) (sanitizer x)))

Listing 4: Defining sources, sinks and sanitizers.

4. STATIC TAINT ANALYSIS OF EVENT-
DRIVEN PROGRAMS

We explain how to detect vulnerabilities through abstract
interpretation (Section 4.1), how to model such vulnerabili-
ties in event-driven programs (Section 4.2), and how to re-
port them in a user-friendly way through regular expressions
describing event sequences (Section 4.3).

4.1 Abstract interpretation in the context of
event-driven programs

To statically analyze event-driven programs, we perform
abstract interpretation using the technique of Abstracting
Abstract Machines (AAM) [21]. From the operational se-
mantics of SchemeE defined as an abstract machine, we de-
rive an abstract version of this semantics as an abstract ab-
stract machine. This machine can then be used to perform
abstract interpretation of event-driven programs. The re-
sult of an abstract interpretation is an abstract state graph
in which nodes represent program states and edges repre-
sent transitions between program states. This graph con-
tains every possible program behavior that can occur during
concrete interpretation, but possibly also spurious behavior
due to over-approximation. A single abstract state can rep-
resent multiple concrete states and is either the evaluation of
an expression, the result of an evaluation, or an error state.
Figure 2 depicts a fragment of an example abstract state
graph.

eval(#f)

(#f, Untainted)

eval((sink key)) eval((add-event-listener o 'clear ...)

error(Int, IS_TAINTED | source=9.25 | sink=17.37) eval('clear)

('clear, Untainted)

eval('#f)

Figure 2: Abstract state graph resulting from abstract in-
terpretation.

To detect security vulnerabilities, the abstract interpre-
tation keeps track of the flow of tainted values. An error

state is generated whenever a tainted value reaches a sink.
For example, an error state is represented as the left leaf
node in Figure 2. This state provides information about the
tainted value such as the type of the value (i.e., Int), the
line and column number of the source (i.e., source=9.25)
and the sink (i.e., sink=17.37) involved in the vulnerability,
together with the precision with which the vulnerability was
detected. If the analysis detects a taint violation with full
precision, the error IS_TAINTED is produced. If it detects
that a taint violation may occur, the error MAYBE_TAINTED

is produced instead.
As illustrated in Section 2.1, naively performing abstract

interpretation of event-driven programs may miss security
vulnerabilities if events are not taken into account. By ig-
noring events, the resulting abstract state graph does not
contain behaviors related to the execution of event listeners.
Such a graph is an unsound approximation of the program
behavior and may not contain every security vulnerability
present in the program.

In order to obtain a sound static analysis for event driven
programs, it is crucial to execute event listeners. A sound
static analysis ensures that a given event-driven program
is free of vulnerabilities under any input and sequence of
events if the analysis detects no possible vulnerability during
abstract interpretation.

We describe our approach to simulate events in the next
section.

4.2 Simulating events
SchemeE provides the special form emit to asynchronously

trigger an event. As opposed to dispatch-event, any corre-
sponding event listeners are not directly executed. Instead,
the emitted event is scheduled in the global event queue and
program execution continues right after the call to emit.
At the end of the program, when the call stack is empty,
(event-queue) is used to initiate the event loop. The event
loop continually extracts a single event from the queue and
executes its corresponding registered event listeners in reg-
istration order.

Because the registered event listeners are executed accord-
ing to which event is consumed from the event queue during
abstract interpretation, the final abstract state graph in-
cludes the behavior of the event listeners. This approach
enables us to detect security vulnerabilities, including the
ones that occur as a result of program flow through event
listeners. To keep track of which event has been executed,
we annotate the edges of the abstract graph with informa-
tion about the triggered event. This information is used in
a later stage (Section 4.3) to generate regular expressions
that describe event sequences leading to a particular secu-
rity vulnerability. We call the resulting graph an abstract
event graph.

Because the order in which events are triggered is largely
non-deterministic, a naive approach is to assume that every
event can be triggered in any order at any time. However,
it is computationally expensive to explore the whole event
space for non-trivial programs in this manner, and it may re-
sult in many false positives. This can be mitigated partially
with domain knowledge about the semantics of the program
and how events occur. Madsen et al. [11] presents a mod-
eling approach to support events and provide the abstract
semantics of an event queue. We follow their approach in or-
der to reduce the search space by explicitly emitting events

in the program.
We extend our motivational example (Listing 2) with a

model that indicates which events can occur and when they
can occur. Listing 5 depicts such a model where the events
clear and save can never occur at the start of the program.
That is because buttons registered for these events are dis-
abled as long as there has not been any keypress event. We
specify this behavior by only emitting a keypress event at
line 18, before calling event-queue. Whenever a keypress

event has been triggered, any other type of event can occur.
We model this by emitting every event (lines 6–8) in the
event listener registered for keypress. We also model that
a save event can never occur after a clear event. This is
specified by only emitting keypress and clear at lines 12
and 13 in the event listener registered for clear. Finally, we
model the fact that a save event implies termination of the
program by not emitting any event from the listener at line
16. We consider termination to be the disappearance of the
form once the save button is pressed. While explicit event
modeling requires some effort, it reduces the search space
and avoids exploring spurious event sequences.

1 (define o (object))
2 (define key #f)
3
4 (add-event-listener o ’keypress
5 (lambda ()
6 (emit o (event ’keypress))
7 (emit o (event ’clear))
8 (emit o (event ’save))
9 (set! key (source ’secret))))

10 (add-event-listener o ’clear
11 (lambda ()
12 (emit o (event ’keypress))
13 (emit o (event ’clear))
14 (set! key #f)))
15 (add-event-listener o ’save
16 (lambda () (sink key)))
17
18 (emit o (event ’keypress))
19 (event-queue)

Listing 5: An event-driven program consisting of explic-
itly modeled event sequences and a leak of confidential
information.

While detecting security vulnerabilities in event-driven
programs is important, knowing why and how they occur
is at least as important. Manually inspecting the abstract
event graph for event sequences of interest is not an option,
given the complexity of event-driven programs and their re-
sulting event graphs. We tackle this problem in the next
section.

4.3 Computing event sequences
Manually deriving event sequences that lead to security

vulnerabilities is not trivial. This is because programs typi-
cally consist of many events, as well as many sources, sani-
tizers, and sinks. We address this problem by automatically
generating regular expressions describing the sequence of
events required for a security vulnerability to occur. Event
sequences provide valuable information to developers detect-
ing and fixing these vulnerabilities.

We start from the observation that the abstract event
graph is equivalent to a non-deterministic finite automaton
with ε-transitions (ε-NFA). This because each state can have
zero, one, or more successor states, and non-annotated edges
in the graph (i.e., control-flow not induced by triggering of
events) correspond to ε-transitions.

This automaton (Q ,Σ , δ, q0 ,F) consists of the set of ab-
stract states Q, a transition function δ(q, a) where q ∈ Q
and a ∈ Σ is either an event or ε. The initial state q0 is the
root state of the abstract state graph, and the set of final
states F includes every error state.

This observation enables us to convert the abstract event
graph to regular expressions in three steps:

1. Convert the ε-NFA to an NFA by calculating the ε-
closure for each state.

2. Convert the NFA to a minimal deterministic finite au-
tomaton (DFA).

3. Convert the DFA to regular expressions for every com-
bination of source and sink.

Conversion to NFA.
The function ECLOSURE(Q) = {s | q ∈ Q ∧ s ∈ δ(q, ε)}

calculates the ε-closure for each state of the automaton.
Given this information, we can eliminate all ε-transitions be-
cause they do not contribute to the final regular expression.
This step results in an ε-free NFA and reduces the number
of states because most transitions are indeed ε-transitions.

Conversion to minimal DFA.
Any NFA can be converted into its corresponding unique

minimal DFA [16]. We opt for Brzozowski’s algorithm to
perform this conversion because it outperforms other algo-
rithms in many cases [2], despite its exponential character.
This algorithm minimizes an ε-free NFA into a minimal DFA
where both automatons accept the same language L. It does
so by reversing the directions of the transitions in an NFA
(rev), and then converting it into an equivalent DFA that
accepts the reverse language LR using the powerset con-
struction method (dfa). The process is repeated a second
time to obtain a minimalistic DFA that accepts language L.
This algorithm is performed by the function minimize.

minimize(fa) = dfa(rev(dfa(rev(fa))))

Extracting regular expressions.
Given a minimal DFA, we can convert it into a regular

expression using several methods [14]. We opt for the transi-
tive closure method because of its systematic characteristic.
First, an n×n×n matrix from a given DFA 〈Q,Σ, δ, q0, F 〉
with n states is built. We define Rk

i,j as the regular expres-
sion for the words generated by traversing the DFA from
state qi to qj while using intermediate states {q1 . . . qk}. We
compute this regular expression in every iteration from 1 to
k as follows:

Rk
i,j = Rk−1

i,j +Rk−1
i,k . Rk−1

k,k

∗
. Rk−1

k,j

The final outcome Rk
i,j is the regular expression that de-

scribes all the event sequences that lead to a particular se-
curity vulnerability.

We apply these steps to the example described in Sec-
tion 4.2 and show the resulting regular expressions below.
The first regular expression (1) is generated from the pro-
gram using the naive approach in which every possible event
ordering is explored. The second regular expression (2) is
generated by means of the model using explicitly modeled

event sequences (Listing 5). We abbreviate the events to
their first letter for brevity. A + indicates choice, . indi-
cates concatenation, and ∗ indicates repetition (Kleene star
operator). From both expressions, it is clear that the event
sequence leading to the leak ends with a keypress event
followed by a save event.

Figure 3 depicts the second regular expression as an au-
tomaton.

(k + ((c+ s).(c+ s)∗.k)).(k + (c.((c+ s)∗.k)))∗.s (1)

(k.k∗.c.(c+ (k.k∗.c+ c∗.k.k∗.c))∗.(c∗ + k)∗)∗.k.k∗.s (2)

Even in this simple example the generated event sequences
are rather long and complex. While all possibilities are im-
portant (e.g. when multiple unique event sequences may
lead to a leak), we deem the shortest possible event sequence
to be the most important one in order to patch the security
vulnerability. In this example, this is the sequence key-

press.save.

Keypress

SaveKeypress

Clear

Keypress

Clear

Figure 3: Finite state automaton of the regular expression
that represents event sequences leading to the security vul-
nerability in Listing 5.

5. IMPLEMENTATION
We implemented the static taint analysis for event-driven

programs discussed in this paper as a proof of concep1.
We make use of the modular framework Scala-AM [17]
to perform static analysis based on systematic abstraction
of abstract machines (AAM) [21]. The implementation sup-
ports SchemeE , our small Scheme language with support for
prototype-based objects, events, and taint that we described
in Section 3. We incorporated an existing library for the
manipulation of finite state automata [13] to obtain a min-
imal DFA from an abstract event graph by computing the
ε-closure and applying the DFA minimization as described
in Section 4.3.

Abstract counting [12] is enabled by default in our im-
plementation. This to improve precision by avoiding un-
necessary joining of values when it is safe to do so. Under
abstraction, the abstract machine represents the unbounded
heap memory by a map that relates a finite number of ad-
dresses to values. This results in possibly different values
being allocated at the same abstract addresses. Such values
are then joined in order to remain over-approximative in the
interpretation. Suppose variable x is allocated at address a
and represents a tainted value. Allocating a variable y rep-
resenting an untainted value at the same address a will cause
the values of x and y to join (i.e., to merge), so that the value
at address a now may be tainted. This over-approximated

1https://github.com/jonas-db/aam-taint-analysis

value is then used in the remainder of the interpretation and
may lead to false positives.

6. PRELIMINARY EXPERIMENTS
To measure the applicability of our approach, we extracted

synthetic benchmarks from larger programs. These bench-
marks are described in Table 1. We include multiple bench-
marks that contain no security violation to assess to which
extent our approach produces false positives. These bench-
marks therefore enable us to determine the precision of our
analysis. We investigate the increase of precision and ac-
curacy that follows from the use of call-site-sensitivity (k-
CFA) [15] as context sensitivity for the analysis. This con-
text sensitivity is well-suited for programs with functions
calls, and we observed that it is not uncommon for event
listeners to call auxiliary functions.

The results of our experiments are shown in Table 1. The
time it takes to produce these results is at most 1.3 sec-
onds. Our analysis did not have any false negatives because
it is sound, and thus has a recall of 100%. For each bench-
mark, we indicate whether the analysis detected a leak with
maximal precision (Must) or not (May), or whether it de-
tected no leak (/). We also indicate whether the results
are correct (3) or not (7). For brevity, we only provide
the shortest event sequence instead of the full regular ex-
pression. We conclude from this table that increasing the
context sensitivity (i.e., increasing the value of k) results in
less false positives in our experiments, while also increasing
the precision and accuracy with which leaks are detected in
the two first benchmarks. However, the analysis was unable
to detect that benchmark programs manylst and delprop do
not contain a leak. These false positives are a consequence
of over-approximations due to abstract interpretation, and
are a common side-effect of static analysis in general. How-
ever, the developer can be certain of the absence of secu-
rity vulnerabilities by only verifying (e.g., simulating with
increased polyvariance or manual inspection) the generated
set of event sequences, as opposed to every possible combina-
tion of events. We discuss lstfunc and rmlst to understand
how context sensitivity can contribute to less false positives
and more precise results.

Context sensitivity and its influence on results.
Listing 6 shows the example lstfunc in which we model

the scenario where event a is emitted, followed by event b.
Each event listener calls the function f, which is a known
sink. The first call to f on line 7 with untainted value 2 does
not result in a security vulnerability. The second call on line
4, however, does result in a security leak.

1 (define window (object))
2 (define f (lambda (x) (sink x)))
3 (add-event-listener window ’b
4 (lambda (e) (f (source #f))))
5 (add-event-listener window ’a
6 (lambda (e)
7 (f 2)
8 (emit window (event ’b))))
9 (emit window (event ’a))

10 (event-queue)

Listing 6: lstfunc example, containing a security vul-
nerability.

Our analysis detects this leak but not with full precision.
This because the parameter x is allocated twice to the same

address, which causes the untainted value 2 and the tainted
value #f to join. Hence, our monovariant analysis (k = 0)
detects that x may be tainted. On the other hand, our poly-
variant analysis with k > 1 is able to distinguish between
the two calls to f and detects the security leak with full
precision.

Listing 7 shows rmlst where a finite event sequence a.b.c.d
is modeled. The example consists of multiple event listen-
ers, each registered for one specific event. The problematic
event listener defined on line 7 is registered for the event d

on line 14 and could cause a leak if the property p of oa

is tainted. However, this listener is removed on line 25 be-
fore any vulnerability can occur (i.e., this example does not
contain a leak).

Without context sensitivity (0-CFA), a leak is detected
by the analysis. The reason is related to the allocation and
subsequent joining of objects, even though this occurs in two
different event listeners (line 10 and 18). Two objects are
joined whenever they are allocated at the same address, and
a new abstract object is created that represents all properties
and all registered event listeners of both objects.

Function f (line 4) calls function g (line 3) which allocates
a new object. With 1-CFA, the analysis can differentiate
between the two different calls to f on line 11 and 19, but
not between the calls to g performed by f. Because of this,
the allocation of the second object (by means of calling f

on line 19) will join with the previously allocated object (by
means of calling f on line 11). The definition of the tainted
property p on line 12 will thus apply to both objects. Note
that o1 is aliased by oa which means that, due to joining,
oa will point to both objects.

Whenever the event c occurs, the event listener is removed
from the object oa. This is not the case when the object
points to an address that represents multiple objects because
removing it would be unsound since we do not know which
event listener was registered to which object. As a result,
emitting the event d on line 25 causes the event listener on
line 7 to execute. the tainted property p of object oa reaches
the sink.

1 (define oa #f)
2 (define window (object))
3 (define (g) (object))
4 (define (f) (g))
5
6 (define listener
7 (lambda (e) (sink (get-property oa ’p))))
8
9 (add-event-listener window ’a

10 (lambda (e)
11 (let ((o1 (f)))
12 (set-property o1 ’p (source 1))
13 (add-event-listener o1 ’d listener)
14 (set! oa o1)
15 (emit window (event ’b)))))
16
17 (add-event-listener window ’b
18 (lambda (e)
19 (f)
20 (emit window (event ’c))))
21
22 (add-event-listener window ’c
23 (lambda (e)
24 (remove-event-listener oa ’d listener)
25 (dispatch-event oa (event ’d))))
26
27 (emit window (event ’a))
28 (event-queue)

Listing 7: rmlst example, where no leak is present due
to the removal of an event listener.

0-CFA 1-CFA 2-CFA
Name Description LOC Leaks Listeners Emits Result Regex Result Regex Result Regex

lstfunc Event listeners call the same function 9 1 2 2 May 3 ba Must 3 ba Must 3 ba
samelst Same event listener for different events 22 1 2 2 May 3 ba Must 3 ba Must 3 ba
nestedlst Event listener calls nested function 14 0 2 2 May 7 ba / 3 / / 3 /
objjoin Event listeners call factory method 28 0 4 4 May 7 abcd May 7 abcd / 3 /
delprop Event listeners delete object property 21 0 2 2 May 7 aa May 7 aa May 7 aa
funccalls Nested registration of event listeners 11 0 2 2 May 7 ab / 3 / / 3 /
rmlst Removing an event listener 26 0 4 4 May 7 abcd May 7 abcd / 3 /
manylst Multiple event listeners for an event 16 0 2 3 May 7 ac May 7 ac May 7 ac

Precision 25% 33% 50%
Recall 100% 100% 100%

Accuracy 25% 50% 75%

Table 1: Precision, recall, and accuracy with k-CFA. Result describes whether the result is detected with full precision (Must)
or not (May). It also indicates whether the result is correct (3) or not (7). Regex is the shortest event sequence that leads
to the security vulnerability. The use of / means that no regular expressions are generated and thus no vulnerabilities were
found. The gray areas indicate correct results and shows how precision increases with increased context sensitivity.

With 2-CFA, the analysis can distinguish between the two
calls to g, and it correctly detects that there are no leaks.

7. RELATED WORK
To the best of our knowledge there exists no precise static

taint analysis to detect security vulnerabilities in the context
of higher-order event-driven programs written in a dynamically-
typed language. Arzt et al. [3] present FlowDroid, a static
taint analysis for Android based on the static analysis frame-
work SOOT [20]. It is aware of the event-driven lifecycle of
Android and user-defined event listeners. However, their ap-
proach does not support higher-order functions. Jovanovic
et al. [8] introduce Pixy which aims to detect cross-site
scripting vulnerabilities (XSS) in PHP 4. However, they
do not support objects, events or higher-order functions.
Guarnieri et al. [6] present Actarus, a blended (i.e., a com-
bination of static and dynamic) taint analysis for JavaScript
to detect client-side vulnerabilities. Their approach is based
on the static analysis framework WALA [5]. However, be-
ing a blended analysis, it depends on run-time information.
Tripp et al. [18] present TAJ, a static taint analysis for Java
6 without support for higher-order functions. It targets four
security vulnerabilities in web applications, including cross-
site scripting (XSS), command injection, malicious file exe-
cutions and information leakage.

There is existing work related to static analysis of event-
driven JavaScript programs using abstract interpretation.
Liang and Might [10] present a static taint analysis for Python
using abstract interpretation. However, their analysis does
not support event-driven programs. Another difference is
that we opt to maintain a product of abstract values and
taint in a single abstract store instead of using two sepa-
rate stores. Tripp et al. [19] present Andromeda, a demand-
driven analysis tool for Java, JavaScript and .NET that has
been successfully used in a commercial product, but has no
support for event-driven programs. Jensen et al. [7] present
TAJS which is a tool to detect type-related and data-flow
related programming errors in event-driven JavaScript web
applications. It is capable of detecting the absence of ob-
ject properties or unreachable code and has support for the
HTML DOM. While the tool has support for events, it does
not track each individual event separately. Their approach
consists of merging events in several categories such as load,
mouse, keyboard, etc. This decision is a trade-off in terms
of performance but leads to less precise event information.

Kashyap et al. [9] present JSAI, a tool with support for
the HTML DOM and events. We notice that both TAJS
and JSAI simulate an event queue where event listeners are
executed in every possible order. To avoid exploring the
complete search space of events, Madsen et al. [11] present
a modeling approach to support events. They do not im-
plement a taint analysis but rather focus on detecting dead
event listeners, dead emits and mismatched synchronous and
asynchronous calls in Node.js. To model event-driven pro-
grams, they require the developer to explicitly place emit
statements in the program. The proposed abstract event
queue will then be filled with these events and enables the
tool to explore the flow of events. While this approach leads
to a smaller search space, it requires some knowledge about
the semantics of the program. Nevertheless, this work in-
spired our implementation of an event queue used in our
abstract machine.

8. CONCLUSION AND FUTURE WORK
In this work, we outline an approach to statically detect

security vulnerabilities in event-driven Scheme programs.
We propose the event-driven language SchemeE and use
abstract interpretation as a technique to compute an over-
approximation of the program’s behavior. We use a three-
step process to generate regular expressions that describe
event sequences that lead to a particular security vulnera-
bility. Event sequences provide valuable information to de-
velopers detecting and fixing these vulnerabilities. We also
investigate the effect of context sensitivity, more precisely
k-CFA, on the results of the analysis. Our results show that
our technique can detect security vulnerabilities in event-
driven programs and that higher precision can be achieved
with increased context sensitivity.

As future work, we envision to investigate techniques that
are able to avoid exploration of spurious event sequences.
We also want to implement our technique for JavaScript.
We deem this language support to be a continuation of our
work because we closely followed the semantics of objects
and events in JavaScript. For larger programs, we foresee
that the size of the abstract state graph grows rapidly be-
cause many event sequences have to be explored. The size
could be reduced by applying a macro-step evaluation [1]
(i.e., a single node per event listener that may consist of mul-
tiple states) instead of a small-step evaluation (i.e., a single
node per state). Another improvement can be to avoid the

exploration of all permutations of event listeners. However,
according to Madsen et al. [11] it is uncommon for a sin-
gle object to have multiple event listeners registered for the
same event. Madsen et al. [11] also proposes two context
sensitivities specific to event-driven programs. We will im-
plement these as future work and investigate whether one
of the context sensitivities (or a combination thereof) can
further improve the results of the analysis. The concept of
event bubbling and event capturing is another problem that
affects program security, but requires a hierarchical relation-
ship between objects.

Although our approach is able to detect security vulnera-
bilities in event-driven programs, the non-deterministic be-
havior of events remains a computational challenge that in-
fluences the ability to detect vulnerabilities. Techniques are
needed to reduce the search space and to further improve
the precision of taint analysis in event-driven programs. Our
work provides foundations toward this goal.

Acknowledgements
Quentin Stiévenart is funded by the GRAVE project of the
Research Foundation - Flanders (FWO). Jens Nicolay is
funded by the SeCloud project sponsored by Innoviris, the
Brussels Institute for Research and Innovation.

References
[1] Gul A Agha, Ian A Mason, Scott F Smith, and Car-

olyn L Talcott. A foundation for actor computation.
Journal of Functional Programming, 7(01):1–72, 1997.

[2] Marco Almeida, Nelma Moreira, and Rogério Reis. On
the performance of automata minimization algorithms.
In Proceedings of the 4th Conference on Computation
in Europe: Logic and Theory of Algorithms, pages 3–
14, 2007.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
ACM SIGPLAN Notices, volume 49, pages 259–269.
ACM, 2014.

[4] Patrick Cousot and Radhia Cousot. Abstract interpre-
tation: a unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, pages
238–252. ACM, 1977.

[5] Stephen Fink and Julian Dolby. WALA
– T.J. Watson libraries for analysis., 2006.
http://wala.sourceforge.net.

[6] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Ju-
lian Dolby, Stephen Teilhet, and Ryan Berg. Saving the
world wide web from vulnerable javascript. In Proceed-
ings of the 2011 International Symposium on Software
Testing and Analysis, pages 177–187. ACM, 2011.

[7] Simon Holm Jensen, Anders Møller, and Peter Thie-
mann. Type analysis for JavaScript. In Proceedings of
16th International Static Analysis Symposium (SAS),
volume 5673 of LNCS. Springer-Verlag, August 2009.

[8] Nenad Jovanovic, Christopher Kruegel, and Engin
Kirda. Pixy: A static analysis tool for detecting web ap-

plication vulnerabilities. In Security and Privacy, 2006
IEEE Symposium on, pages 6–pp. IEEE, 2006.

[9] Vineeth Kashyap, Kyle Dewey, Ethan A Kuefner, John
Wagner, Kevin Gibbons, John Sarracino, Ben Wieder-
mann, and Ben Hardekopf. Jsai: A static analysis plat-
form for javascript. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pages 121–132. ACM, 2014.

[10] Shuying Liang and Matthew Might. Hash-flow taint
analysis of higher-order programs. In Proceedings of the
7th Workshop on Programming Languages and Analysis
for Security, page 8. ACM, 2012.

[11] Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static
analysis of event-driven node. js javascript applica-
tions. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 505–519.
ACM, 2015.

[12] Matthew Might and Olin Shivers. Improving flow anal-
yses via γcfa: abstract garbage collection and counting.
In ACM SIGPLAN Notices, volume 41, pages 13–25.
ACM, 2006.

[13] Anders Møller. dk.brics.automaton – finite-state
automata and regular expressions for Java, 2010.
http://www.brics.dk/automaton/.

[14] Christoph Neumann. Converting deterministic
finite automata to regular expressions, 2005.
http://liacs.leidenuniv.nl/ bonsanguem-

m/FI2/DFA_to_RE.pdf.
[15] Olin Shivers. Control-flow analysis of higher-order lan-

guages. PhD thesis, Carnegie-Mellon University, 1991.
[16] Michael Sipser. Introduction to the Theory of Compu-

tation, volume 2. Thomson Course Technology Boston,
2006.

[17] Quentin Stiévenart, Maarten Vandercammen, J Nico-
lay, W De Meuter, and C De Roover. Scala-am: A
modular static analysis framework. In Proceedings of
the 16th IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM, vol-
ume 16, 2016.

[18] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu
Sridharan, and Omri Weisman. Taj: effective taint
analysis of web applications. ACM Sigplan Notices, 44
(6):87–97, 2009.

[19] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia
Cousot, and Salvatore Guarnieri. Andromeda: Ac-
curate and scalable security analysis of web applica-
tions. In International Conference on Fundamental
Approaches to Software Engineering, pages 210–225.
Springer, 2013.

[20] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot –
a java bytecode optimization framework. In Proceed-
ings of the 1999 conference of the Centre for Advanced
Studies on Collaborative research, page 13. IBM Press,
1999.

[21] David Van Horn and Matthew Might. Abstracting ab-
stract machines. In ACM Sigplan Notices, volume 45,
pages 51–62. ACM, 2010.

[22] Dave Wichers. OWASP top ten project – a list of the
10 most critical web application security risks, 2013.
https://www.owasp.org/index.php.

