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Abstract
Abstract garbage collection is the application of garbage collection to an abstract interpreter. Existing
work has shown that abstract garbage collection can improve both the interpreter’s precision and
performance. Current approaches rely on heuristics to decide when to apply abstract garbage
collection. Garbage will build up and impact precision and performance when the collection is
applied infrequently, while too frequent applications will bring about their own performance overhead.
A balance between these tradeoffs is often difficult to strike.

We propose a new approach to cope with the buildup of garbage in the results of an abstract
interpreter. Our approach is able to eliminate all garbage, therefore obtaining the maximum precision
and performance benefits of abstract garbage collection. At the same time, our approach does not
require frequent heap traversals, and therefore adds little to the interpreters’s running time. The core
of our approach uses reference counting to detect and eliminate garbage as soon as it arises. However,
reference counting cannot deal with cycles, and we show that cycles are much more common in
an abstract interpreter than in its concrete counterpart. To alleviate this problem, our approach
detects cycles and employs reference counting at the level of strongly connected components. While
this technique in general works for any system that uses reference counting, we argue that it works
particularly well for an abstract interpreter. In fact, we show formally that for the continuation
store, where most of the cycles occur, the cycle detection technique only requires O(1) amortized
operations per continuation push.

We present our approach formally, and provide a proof-of-concept implementation in the Scala-AM
framework. We empirically show our approach achieves both the optimal precision and significantly
better performance compared to existing approaches to abstract garbage collection.
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1 Introduction

Garbage collection (GC) is a well-known approach to automatic memory management that
reclaims resources by removing items from the heap that are no longer needed. In general,
there are two main approaches to garbage collection [2, 31]: tracing GC, such as the mark-
and-sweep and stop-and-copy algorithms, and reference counting. Implementers of language
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10:2 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

runtimes often deem tracing GC superior. Regular reference counting cannot deal with cyclic
structures in the heap, and may result in a greater overhead in terms of both memory usage
and performance [50].

An abstract interpreter [12, 40] soundly over-approximates the behaviour of a concrete
interpreter. The approximation has to be chosen such that the abstract interpreter terminates
on all programs, but still accounts for every behaviour the program may exhibit when
executed by a concrete interpreter. It is not straightforward to design an efficient abstract
interpreter [11, 27, 29]. Over-approximating too much renders its results less precise, while
over-approximating too little slows its convergence down. Next to their abstract value lattice,
abstract interpreters feature several configuration parameters to strike this balance, such as
context-sensitivity [51, 44], widening [13] and different control-flow abstractions [30, 21], the
interplay of which impacts performance and precision in less than predictable manners.

1.1 Motivating Abstract Garbage Collection
Garbage collection appears to be an exception to this rule. Incorporating garbage collection
in an abstract interpreter can greatly improve both its precision and performance [42, 43].
Garbage in the heap can disrupt the interpreter’s behaviour. Several means of guaranteeing
termination involve bounding the set of memory locations available to the interpreter. The
interpreter may therefore bring garbage “back to life” whenever its allocator returns an
already-occupied location. The resulting imprecision propagates to the abstract state space
explored by the interpreter, causing it to explore spurious states. Garbage collection can
keep the interpreter’s memory, and hence the state space it explores, free of garbage and
its negative effects. It has been shown to reduce the explored state space by orders of
magnitude [43, 47], resulting in equally large improvements in precision and performance.

Precision Loss Illustrated. The Scheme program in Listing 1 illustrates how surviving
garbage can cause an abstract interpreter to lose precision.

Listing 1 Motivating abstract garbage collection.
1 (let [( double ( lambda (x) (+ x x)))
2 ( square ( lambda (y) (* y y)))
3 ( apply-fn ( lambda (f n) (f n)))]
4 ( apply-fn double 3)
5 ( apply-fn square 4))

Clearly, a concrete interpreter evaluates this program to 16. As mentioned above, an
abstract interpreter will sometimes reuse the same memory location for different allocations.
Monovariant allocation schemes such as 0CFA [51], for instance, reuse the same memory
location for all allocations of the same lexical variable [20]. Values that end up in the same
memory location are joined together, for instance by computing the union of all these values.

We denote the memory location used for a variable v by @v, and use the notation @v 7→ a
to indicate that the heap at memory location @v contains the abstract value a. After the first
function call on line 4, the interpreter’s memory will contain @f 7→ {double} and @n 7→ {3}.
The contents of @f and @n can be considered garbage after this function call, but is kept in
memory without abstract garbage collection. This means that the second call of apply-fn
on line 5 will have to join its argument values with the ones of the previous call that still
reside at locations @f and @n, resulting in @f 7→ {double,square} and @n 7→ {3,4}.

The garbage left at these locations is now “alive” again, and will cause further losses
in precision. Due to the imprecision at location @f, the abstract interpreter will consider
double as well as square as potential targets for the function call, causing spurious paths in
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the control flow that affect both precision and performance. For instance, the contents of @n
will propagate to both @x 7→ {3,4} and @y 7→ {3,4}. The abstract interpreter effectively
considers every possible combination of operator and operands, and evaluates this program
to {6,7,8,9,12,16}. This is a major, but sound, over-approximation of the actual result.

Now consider that abstract GC had been applied immediately after the call on line 4, but
just before the call on line 5. This application would have removed all garbage values from
memory locations @f, @n and @x, as these locations are out of scope at this program point.
The second function call would then have been explored under the precise mappings @f 7→
{square} and @n 7→ {4}, causing the abstract interpreter to evaluate this program to {16}.

1.2 Problem: Application Policies for Abstract Garbage Collection
The objective of abstract GC is not to reclaim memory space, but to prevent potential
precision loss due to the reuse of memory locations in the future that contain garbage values.
Abstract GC therefore ought to be applied preemptively. The question is only when.

In the example of Listing 1, it was crucial to apply abstract GC just between the function
calls on line 4 and 5 to avoid the precision loss. Of course, the abstract interpreter is not
privy to this knowledge when it arrives to that program point. Nevertheless, the precision
loss cannot be recovered at any later point through abstract GC.

Survey of Existing Policies. A simple, but surprisingly effective policy that is often used in
practice [43, 46, 49, 14, 16] is to apply abstract GC at every evaluation step of the abstract
interpreter. Doing so ensures that all garbage is eliminated immediately, rendering the
abstract interpreter effectively “garbage-free” [23]. A garbage-free interpreter only explores
states that do not contain any garbage, which implies that no precision is lost to garbage
values at all. However, realizing this property comes at a cost: frequent GC applications can
become performance-detrimental, in particular for programs with large heaps [34, 16].

Other policies apply GC less frequently to avoid this overhead, which does result in some
precision loss from non-collected garbage. For instance, the TAJS static analysis [26] applies
abstract GC upon every function exit. This policy requires fewer GC applications, and
function exits are good GC application candidates as garbage tends to be left behind when
exiting a function’s scope. The policy of ΓCFA [42] (and later, LFA [39]), which pioneered
the use of abstract GC, is to apply abstract GC when the address allocator returns a memory
location that is already in use. As such, it triggers abstract GC whenever values need to
be joined in the store, so that by design a value can never be joined with garbage. While
the ΓCFA policy avoids a common form of garbage-induced imprecision, it still applies GC
frequently. The explored state space can moreover not be considered “garbage-free” as some
of the states remain polluted and/or spurious. In fact, in a follow-up paper [43], the authors
changed their policy to an application of GC at every step for the sake of garbage-freeness.

Precision Impact of Policies. Figure 1 illustrates the impact of common abstract GC
policies on the state space explored by an abstract interpreter for a slightly more complicated
Scheme program, included in Appendix C. For this example, the abstract interpreter uses a
monovariant allocation policy and an abstract value lattice that approximates a value by the
set of all its possible types. Policies that apply GC more frequently reduce the state space to
be explored, which results in both higher precision and performance, but at the same time
also causes a performance overhead. Our evaluation in Section 5 shows that this overhead
significantly decreases the throughput of the abstract interpreter. In terms of performance,
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10:4 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

(a) without GC: 431 states.

(b) when using GC at every join operation in the store (as in ΓCFA [42]): 159 states.

(c) when using GC at every step (as in [43, 16, 49, 46, 14]): 60 states.

Figure 1 State space explored by the abstract interpreter for different GC policies.

policies that apply GC less frequently (e.g., the ΓCFA one) often prove more efficient in
terms of performance despite the larger state space to explore. In terms of precision, applying
GC at every step yields the optimal result.

1.3 Approach: Abstract Reference Counting
We aim to realize “garbage-free” abstract interpretation more efficiently, attaining optimal
precision without significant compromises to performance. We propose to collect garbage in
an abstract interpreter using reference counting, and argue that its evaluation with respect
to tracing GC needs to be reconsidered for abstract interpreters.

Reconsidering the Disadvantages of Reference Counting. The overhead of reference
counting in the concrete is less outspoken in the abstract. The reason is twofold. First,
abstract interpreters typically use fewer memory locations than their concrete counterparts.
As such, fewer reference counts need to be maintained. Second, abstract interpreters can
tolerate more memory management overhead than concrete interpreters. The fact that
reference counting cannot reclaim cyclic garbage, however, remains an issue in the abstract.
In fact, we have observed cyclic garbage to be more prevalent in the abstract. Section 4
addresses this problem separately as it directly impedes realizing the “garbage-free” property.

Reconsidering the Advantages of Reference Counting. The main advantage of reference
counting stems from its continuous nature. Garbage is collected under reference counting as
soon as it arises. As soon as the reference count of a memory location becomes zero, reference
counting immediately reclaims that location. Tracing GC approaches hold on to garbage
until the next GC application. Unless the application requires minimal GC pauses, this is
generally not an issue for concrete interpreters. For abstract interpreters, however, garbage
held on to impacts precision – requiring abstract tracing GCs to be applied frequently.

Simple bookkeeping suffices for abstract reference counting to immediately and efficiently
eliminate all garbage, precluding the need for GC application policies that seek to balance
the imprecision of long-lived garbage with the overhead of collection frequency. Abstract
reference counting collects garbage continuously before it can cause a precision loss.
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Finally, tracing GC needs to traverse the entire heap, which can get larger for more
complex programs. Such expensive traversals increase overhead when applied frequently.
The cost of reference counting is mostly insensitive to the size of the heap [2].

Contributions. The contributions of this work are as follows:
We introduce abstract reference counting as a more efficient approach to abstract garbage
collection that renders the explored state space garbage-free. We present this approach
formally and prove that in terms of abstract GC, it is not only sound (i.e., it only removes
garbage), but also complete (i.e., it removes all garbage).
We discern sources of garbage cycles during abstract interpretation, and present a novel
cycle detection algorithm for abstract reference counting based on these observations. We
show that per insertion to the abstract interpreter’s continuation store, from which most
cyclic garbage stems, the algorithm only requires amortized O(1) additional operations.
We provide a proof-of-concept implementation in the Scala-AM framework [54, 53] and
an empirical evaluation of our approach using the Gabriel benchmark suite for Scheme
programs [18]. The results show that our approach achieves optimal precision and is
significantly more performant compared to existing approaches to abstract GC.

We present our work in a minimal setting using the AAM approach [23, 40] to abstract
interpretation. Therefore, we elide common optimizations to AAM [27] and do not consider
any of its variations (e.g., AAC [30]), although our approach remains applicable in such
settings as well. An advantage of AAM is that it is a systematic method for the design of a
wide variety of analyses, which is applicable to programs with highly-dynamic behavior (e.g.,
higher-order programs with mutable state). The performance and precision improvements
brought by our work should therefore carry over to such analyses. Moreover, we argue
that the concepts behind abstract reference counting are sufficiently general to support its
incorporation in other existing analyses that already make use of abstract tracing GC.

Structure of the Paper. We introduce the necessary background in Section 2: an abstract
interpreter for ANF-style λ-calculus, into which we have incorporated an abstract tracing
GC. Section 3 replaces this abstract tracing GC by abstract reference counting, resulting
in a more efficient collection of garbage during abstract interpretation. Section 4 explains
why garbage cycles are more common in an abstract interpreter, and proposes a technique to
detect these cycles so that reference counting can reclaim all cyclic garbage. We apply this
technique to obtain an abstract interpreter that is completely garbage-free. Section 5 presents
our experimental results. We compare to existing approaches to abstract GC in terms of
precision and performance. We conclude with a discussion of related work in Section 6.

2 Background

Figure 2 defines the syntax of a higher-order language λANF, based on the λ-calculus in
A-Normal Form [17] (ANF). ANF is a syntactic form that restricts operators and operands
to atomic expressions ae which can be evaluated immediately without impacting the program
state. This simplification can be automated, is purely cosmetic, and without loss of generality.

We start with the formal definition of the small-step operational semantics for λANF (Sec-
tion 2.1). Following the Abstracting Abstract Machines (AAM) approach [23, 40], we derive
an abstract interpreter from these semantics, and discuss the impact of abstract tracing GC
on the state space explored by the interpreter (Section 2.2).

ECOOP 2019



10:6 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

e ∈ Exp ::= letx= e1 in e2 [Let]
| f ae [Call]
| ae [Return]

f, ae ∈ Atom ::= v | lam
lam ∈ Lam ::= λx.e

x, v ∈ Var (a set of identifiers)

Figure 2 Grammar of the minimalist higher-order language λANF.

2.1 Concrete Interpretation of λANF

The concrete interpreter for λANF is formulated as an abstract machine using small-step
operational semantics. We systematically describe the design of this abstract machine.

State Space. Figure 3 describes the state space Σ for the concrete interpreter. A state
ς consists of an expression e under evaluation, an environment ρ mapping variables to
addresses, a store σ mapping addresses to values (in case of λANF, the only values are
closures), a continuation store σk to model the “stack”, which maps continuation addresses to
continuations, and the current continuation address ak (pointing to “the top of the stack”). A
continuation κ consists of the variable address to which the resulting value should be bound
and the next expression, environment, and continuation address to continue the evaluation.
For a concrete interpreter, addresses come from an infinite set (e.g., Addr = KAddr = N).

ς ∈ Σ = Exp× Env× Store
× KStore× KAddr

ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr⇀ Clo

σk ∈ KStore = KAddr⇀ Kont

clo ∈ Clo = Lam× Env
κ ∈ Kont = Addr× Exp× Env× KAddr
l ∈ Loc = Addr ∪ KAddr

a ∈ Addr (an infinite set)
ak ∈ KAddr (an infinite set)

Figure 3 State space of the concrete interpreter for λANF.

For a state ς, we implicitly assume subscripted notations for its components so that
ς = 〈eς , ρς , σς , σkς , akς〉. For (partial) maps, [] denotes the empty map, while the notation
m[a 7→ b] extends the map m so that m[a 7→ b](a) = b and m[a 7→ b](x) = m(x) for x 6= a.

Evaluation Rules. Atomic expressions can be evaluated in a single step, without making
any modifications to the store. Therefore, we first introduce an auxiliary function A :
Atom× Env× Store→ Clo to evaluate atomic expressions:

A(v, ρ, σ) = σ(ρ(v)) A(lam, ρ, σ) = 〈lam, ρ〉

Figure 4 shows the small-step transition relation (→) for λANF. We assume that the value
allocation function alloc and the continuation allocation function allock always return a fresh
address so that alloc(x, ς) 6∈ dom(σς) and allock(e, ς) 6∈ dom(σkς).

We write ςa
n−→ ςb when ςa = ς0 → ς1 → . . . → ςn = ςb. Similarly, we define ( ∗−→) as the

symmetric, transitive closure of (→). Note that for a concrete interpreter, this transition
relation is deterministic, i.e. if ς0

n−→ ς1 and ς0
n−→ ς2 then ς1 = ς2.

Garbage Collection. We now add a tracing garbage collector to this concrete interpreter.
We use notation and definitions similar to those used by Might and Shivers [42]. First, we
define a family of auxiliary functions TX : X → P(Loc) that return all addresses that are
referenced directly by some state, environment, closure or continuation:
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a = alloc(x, ς) ak
′ = allock(e1, ς) ρ′ = ρ[x 7→ a]

〈letx= e1 in e2, ρ, σ, σk, ak〉︸ ︷︷ ︸
ς

→ 〈e1, ρ, σ, σk[ak′ 7→ 〈a, e2, ρ
′, ak〉], ak′〉

(E-Let)

A(f, ρ, σ) = 〈λx.e′, ρ′〉 A(ae, ρ, σ) = v a = alloc(x, ς)
〈f ae, ρ, σ, σk, ak〉︸ ︷︷ ︸

ς

→ 〈e′, ρ′[x 7→ a], σ[a 7→ v], σk, ak〉
(E-Call)

A(ae, ρ, σ) = v σk(ak) = 〈a′, e′, ρ′, ak′〉
〈ae, ρ, σ, σk, ak〉 → 〈e′, ρ′, σ[a′ 7→ v], σk, ak′〉

(E-Return)

Figure 4 Transition rules of the concrete interpreter for λANF.

TΣ(〈e, ρ, σ, σk, ak〉) = TEnv(ρ) ∪ {ak}
TClo(〈λx.e, ρ〉) = TEnv(ρ)

TEnv(ρ) = range(ρ)
TKont(〈a, e, ρ, ak〉) = TEnv(ρ) ∪ {a, ak}

Next, we introduce the adjacency relation between addresses, ( ς) : Loc × Loc, where
intuitively l̂ ς l̂

′ means that there is a reference from address l̂ to address l̂′:

l ∈ TClo(σς(a))
a ς l

l ∈ TKont(σkς(ak))
ak  ς l

and use the notation ( ∗ ς) for its reflexive transitive closure. The function R : Σ→ P(Loc),
which computes all reachable addresses of a state, is then defined as follows:

R(ς) = {l′ ∈ Loc | l ∈ TΣ(ς) ∧ l ∗ ς l
′}.

Finally, the function Γ : Σ→ Σ applies garbage collection to a state by restricting the domain
of the store and the continuation store to the addresses that are still reachable. The function
Γ can be seen as a tracing garbage collector, since it defines garbage directly in terms of
what is no longer reachable [2, 31]. Domain restriction is denoted by a vertical bar, so that
f |X(x) = f(x) for x ∈ X and f |X(x) is undefined for x 6∈ X.

Γ(ς) = 〈eς , ρς , σς |R(ς), σkς |R(ς), ak〉

To keep the abstract machine’s transition relation simple and deterministic, we incorporate
GC into the semantics by defining a new relation (→Γ) as the composition of (→) and Γ:

(→Γ) = Γ ◦ (→)

This means that (→Γ) first takes an evaluation step, followed by a garbage collection. This
“GC at every step” strategy makes the interpreter garbage-free: during evaluation, for every
state ς, we have that R(ς) = dom(σς) ∪ dom(σkς). However, for a concrete interpreter, this
property does not really have an impact on the result of the evaluation. Theorem 1 states
this formally: for a given state ς, taking n transition steps using (→Γ) leads to the same
state, modulo GC, as taking n transition steps using (→).

I Theorem 1. If ς0
n−→Γ ς1 and ς0

n−→ ς2, then ς1 = Γ(ς2).

Proof. This follows directly from Might and Shivers [42] and is detailed in Appendix A. J
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This confirms that concrete garbage collection does not affect the evaluation of a program.
For a practical implementation, however, concrete garbage collection can still be useful when
the size of the σ and σk components become too large to fit in computer memory.

Program Semantics. Using the transition relation (→Γ), we can define a function eval :
Exp→ P(Σ) which computes all the states reachable by the concrete interpreter, starting
from the initial state of the program:

eval(e) = {ς ∈ Σ | 〈e, [], [], [], ahalt〉
∗−→Γ ς}

where ahalt is a special address in the set KAddr. By computing eval(e), we obtain the
collecting semantics1 of the program e. Unfortunately, when e does not terminate, the
concrete interpreter may explore an infinite amount of states in Σ. Hence, for a concrete
interpreter, the set eval(e) is potentially infinite, and therefore not always computable.

2.2 Abstract Interpretation of λANF

We now systematically turn this concrete interpreter for λANF into an abstract interpreter,
highlighting the important changes that we need to make in gray .

State Space. The main issue with the concrete interpreter in Section 2.1 is that the state
space Σ is infinite, and hence the set eval(e) is not always computable for any program e. To
solve this issue, the AAM approach [23, 40] replaces the infinite sets Addr and KAddr with
finite sets Âddr and K̂Addr, respectively. One can easily verify that this suffices to keep the
state space finite. Figure 5 shows the abstract state space Σ̂.

ς̂ ∈ Σ̂ = Exp× Ênv× Ŝtore

× K̂Store× K̂Addr

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr→ P(Ĉlo)

σ̂k ∈ K̂Store = K̂Addr→ P(K̂ont)

ĉlo ∈ Ĉlo = Lam× Ênv

κ̂ ∈ K̂ont = Âddr× Exp× Ênv× K̂Addr

l̂ ∈ L̂oc = Âddr ∪ K̂Addr

â ∈ Âddr (a finite set)

âk ∈ K̂Addr (a finite set)

Figure 5 State space of the abstract interpreter for λANF.

As the abstract interpreter can only use a finite number of addresses, it may need to
reuse the same address for multiple allocations. Values that end up at the same address need
to be joined together to obtain a sound, but finite approximation. Hence, both the store
and continuation store now map addresses to a set of closures and a set of continuations,
respectively. We introduce the join operator t defined as follows:

(σ̂1 t σ̂2)(â) = σ̂1(â)∪ σ̂2(â) (σ̂k1 t σ̂k2)(âk) = σ̂k1(âk)∪ σ̂k2(âk) ⊥
σ̂
=⊥

σ̂k
= λl̂. ∅

Evaluation Rules. The atomic evaluation function Â : Atom × Ênv × Ŝtore → P(Ĉlo) for
the abstract interpreter evaluates atomic expressions to a set of closures:

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v)) Â(lam, ρ̂, σ̂) = { 〈lam, ρ̂〉 }

1 not to be confused with garbage collection
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We leave the choice of sets Âddr and K̂Addr, as well as the allocation functions âlloc and
âllock open as configuration parameters of the abstract interpreter (resulting in a particular
allocation policy). Any allocation policy yields a sound and decidable analysis [23] (as long
as the sets Âddr and K̂Addr are chosen to be finite). However, the choice is not arbitrary,
as the allocation policy decides how often (determined by the size of Âddr and K̂Addr) and
when (determined by âlloc and âllock) addresses need to be reused. This choice therefore
affects the precision and polyvariance [20] of the abstract interpreter2. For example, the
following allocation policy results in monovariant analysis [51] which reuses the same address
for all allocations of the same variable:

Âddr = Var K̂Addr = Exp âlloc(x, ς̂) = x âllock(e, ς̂) = e

Figure 6 shows the abstract transition relation (→̂) for λANF. Note that, unlike in the concrete
interpreter for λANF, the transition relation is no longer deterministic.

â = âlloc(x, ς̂) â′k = âllock(e1, ς̂) ρ̂′ = ρ̂[x 7→ â]

〈letx= e1 in e2, ρ̂, σ̂, σ̂k, âk〉︸ ︷︷ ︸
ς̂

→̂〈e1, ρ̂, σ̂, σ̂k t [â′k 7→ { 〈â, e2, ρ̂
′, âk〉 } ], â′k〉

(E-Let)

Â(f, ρ̂, σ̂) 3 〈λx.e′, ρ̂′〉 Â(ae, ρ̂, σ̂) = v̂ â = âlloc(x, ς̂)
〈f ae, ρ̂, σ̂, σ̂k, âk〉︸ ︷︷ ︸

ς̂

→̂〈e′, ρ̂′[x 7→ â], σ̂ t [â 7→ v̂], σ̂k, âk〉
(E-Call)

Â(ae, ρ̂, σ̂) = v̂ σ̂k(âk) 3 〈â′, e′, ρ̂′, â′k〉
〈ae, ρ̂, σ̂, σ̂k, âk〉→̂〈e′, ρ̂′, σ̂ t [â′ 7→ v̂], σ̂k, â′k〉

(E-Return)

Figure 6 Transition rules of the abstract interpreter for λANF.

Garbage Collection. Just as in the concrete interpreter, we can perform garbage collection
in the abstract interpreter (known as abstract garbage collection) by removing all addresses
from σ̂ς̂ and σ̂kς̂ that are no longer reachable from ς̂. The definitions remain mostly unchanged:

T̂Σ̂(〈e, ρ̂, σ̂, σ̂k, âk〉) = T̂Ênv(ρ̂) ∪ {âk}

T̂Ĉlo(〈λx.e, ρ̂〉) = T̂Ênv(ρ̂)

T̂P(Ĉlo)(V̂) =
⋃
ĉlo∈V̂

T̂Ĉlo(ĉlo)

T̂Ênv(ρ̂) = range(ρ̂)

T̂K̂ont(〈a, e, ρ̂, âk〉) = T̂Ênv(ρ̂) ∪ {â, âk}

T̂P(K̂ont)(K̂) =
⋃
κ̂∈K̂

T̂K̂ont(κ̂)

Similarly, the adjacency relation ( ̂ς̂) : L̂oc× L̂oc is adapted for abstract addresses:

l̂ ∈ T̂P(Ĉlo) (σ̂ς̂(â))

â  ̂ς̂ l̂

l̂ ∈ T̂P(K̂ont) (σ̂kς̂(âk))

âk  ̂ς̂ l̂

2 For the sake of simplicity, our abstract interpreter does not include a timestamp component (as in [23]),
which could be used to express more complex allocation policies such as k-CFA with k ≥ 1.
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All reachable addresses can then be computed using R̂ : Σ̂→ P(L̂oc):

R̂(ς̂) = {l̂′ ∈ L̂oc | l̂ ∈ T̂Σ̂(ς̂) ∧ l̂
∗
 ̂ς̂ l̂

′}.

and the abstract garbage collection function Γ̂ : Σ̂→ Σ̂ is defined as follows:

Γ̂(ς̂) = 〈eς̂ , ρ̂ς̂ , σ̂ς̂ |R̂(ς̂), σ̂kς̂ |R̂(ς̂), âkς̂〉

where f |X(x) = f(x) for x ∈ X and f |X(x) = ∅ for x 6∈ X. The new abstract transition
relation (→̂Γ̂) can again be defined as a composition of Γ̂ and (→̂):

(→̂Γ̂) = Γ̂ ◦ (→̂)

Applying garbage collection at every evaluation step ensures that we end up with a garbage-
free abstract interpreter. More precisely, if we define Ŝ : Σ̂→ P(L̂oc), so that Ŝ(ς̂) is the set
of addresses bound in the stores of ς̂, as:

Ŝ(ς̂) = {â ∈ Âddr | σ̂ς̂(â) 6= ∅} ∪ {âk ∈ K̂Addr | σ̂kς̂(âk) 6= ∅}

Then we define garbage-free as follows:

I Definition 2 (Garbage-free). A state ς̂ is garbage-free iff R̂(ς̂) = Ŝ(ς̂), or equivalently:
Γ̂(ς̂) = ς̂. A transition relation (→̂) is garbage-free iff it preserves garbage-freeness. That is,
(→̂) is garbage-free iff for every garbage-free state ς̂ where ς̂ →̂ ς̂ ′, ς̂ ′ is garbage-free.

I Theorem 3. (→̂Γ̂) is garbage-free

Proof. By definition, Γ̂(ς̂) is always a garbage-free state, and (→̂Γ̂) applies Γ̂ to the resulting
state. Therefore, every resulting state of (→̂Γ̂) is garbage-free, hence (→̂Γ̂) is garbage-free. J

By design, every state produced by ς̂ produced by (→̂Γ̂) is garbage-free (Theorem 3). Note
however, that applying garbage collection at every step, as in (→̂Γ̂), may not be practical,
since computing the set R̂(ς̂) at every evaluation step causes a significant performance
overhead. In a practical implementation, one may choose to apply abstract garbage collection
at less regular intervals; however, in doing so the abstract interpreter is no longer guaranteed
to be garbage-free (i.e., in general, R̂(ς̂) ⊆ Ŝ(ς̂)).

Theorem 1 previously showed that this garbage-free property does not really matter
for a concrete interpreter. This is no longer the case for the abstract interpreter: as a
counter-example, consider a monovariant analysis of the program presented in Listing 1.
If the abstract interpreter uses the transition relation (→̂), then after the function call on
line 4 we have that σ̂ς̂(f) = {ĉlodouble}, where ĉlodouble is the closure of the double function
that f was bound to. Note that at that program point, f 6∈ R̂(ς̂), but since (→̂) does not
perform abstract GC, the binding is not removed from σ̂. Therefore, at the function call of
line 5, when f needs to be bound to the closure ĉlosquare of the square function, the values
are joined together using t so that σ̂ς̂′(f) = {ĉlodouble, ĉlosquare}. Intuitively, this means
that the abstract interpreter does not know exactly which of these two closures f is bound
to, and to soundly over-approximate any possible execution behaviour, it needs to consider
both options. This imprecision therefore introduces spurious control flow into the abstract
interpreter, which implies that it will explore more states than necessary. Also note that at
that point, f ∈ R̂(ς̂ ′), so applying Γ̂ to collect garbage is no longer able to recover this loss of
precision in ς̂ ′. In contrast, if we keep the abstract interpreter garbage-free by using the (→̂Γ̂)



N. Van Es, Q. Stiévenart, and C. De Roover 10:11

transition relation, we can avoid this precision loss. After the function call at line 4, since
f 6∈ R̂(ς̂), and since all states produced by (→̂Γ̂) are garbage-free, we have that f 6∈ Ŝ(ς̂),
which implies that σ̂ς̂(f) = ∅. Therefore, for the next call to apply-fn, σ̂ς̂′(f) = {ĉlosquare},
so that the abstract interpreter knows precisely which closure is bound to f .

In general, an abstract interpreter loses precision whenever two non-empty sets are joined
in the store (or continuation store) using t (which happens when the abstract interpreter
reuses an address that is already allocated). As common wisdom puts it: “merging [i.e.,
join] is the enemy of precision” [29], and as such it should only be used sparingly. This is
exactly what abstract garbage collection achieves by emptying all sets at addresses that are
no longer reachable, so that these sets can no longer be merged with in the future.

Program Semantics. The abstract collecting semantics of a program can now be defined
using the function êval : Exp→ P(Σ̂) which computes all the states reachable by the abstract
interpreter, starting from the initial state of the program:

êval(e) = {ς̂ ∈ Σ̂ | 〈e, [],⊥
σ̂
,⊥

σ̂k
, âhalt〉

∗
→̂Γ̂ ς̂}

where âhalt is a special address in the set K̂Addr. As Σ̂ is finite, for any program e it is
guaranteed that êval(e) is finite and therefore computable. We can reason over the behaviour
of e by reasoning over êval(e) to obtain a sound and decidable program analysis.

The definition of êval reveals another benefit of abstract garbage collection. Garbage-free
abstract interpretation reduces the state space that needs to be explored (i.e., the size of
êval(e)), which improves both its precision and performance while still producing a sound
over-approximation of the program’s concrete semantics. That is, a garbage-free abstract
interpreter only explores a smaller subset of Σ̂ where Γ̂(ς̂) = ς̂. In contrast, an abstract
interpreter that is not garbage-free may explore equivalent states multiple times, i.e., it may
explore ς̂1, ς̂2, ..., ς̂k where ς̂1 6= ς̂2 6= ... 6= ς̂k, but Γ̂(ς̂1) = Γ̂(ς̂2) = ... = Γ̂(ς̂k). This can be
seen clearly in Figure 1, where performing a GC before every join as in ΓCFA [43] results in
159 states, while performing a GC for every state results in 60 states.

3 Abstract Reference Counting

Section 2.2 detailed the prototypical design of an abstract interpreter that is garbage-
free thanks to abstract GC [42]. The benefits of being garbage-free include substantial
improvements to both the precision and performance of the abstract interpreter. The cost of
realizing this property through abstract tracing GC is the need for an application policy that
collects garbage at every evaluation step, which results in its own performance overhead.

In this section, we develop a more efficient design for garbage-free abstract interpreters.
Instead of computing R̂(ς̂) at every step (as in tracing garbage collection), the main idea is
to keep track of all references to every address l̂ in ς̂ (as in reference counting), from which
it is possible to determine whether l̂ ∈ R̂(ς̂). When there are no more references to l̂, we
have that l̂ 6∈ R̂(ς̂), and the memory location can be reclaimed. If the abstract interpreter
consistently collects all addresses without references, and there are no cyclic references in
memory3, then for every address l̂ that still has references, we have that l̂ ∈ R̂(ς̂).

3 which means that ∀ l̂1, l̂2 ∈ L̂oc,¬(̂l1
∗
 ̂ l̂2 ∧ l̂2

∗
 ̂ l̂1).
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As the abstract interpreter performs abstract garbage collection through reference count-
ing, we refer to it as abstract reference counting. We augment the abstract interpreter of
Section 2.2 with abstract reference counting and show that, in the absence of cycles, it is
equivalent to a garbage-free abstract interpreter using abstract tracing GC with the transition
relation (→̂Γ̂). Section 4 discusses our solution to the problem of cyclic garbage.

3.1 Abstract Interpretation with Reference Counting using (→̂arc)

ς̂ ∈ Σ̂arc = Exp× Ênv× Ŝtore× K̂Store× K̂Addr ×R̂efs φ̂ ∈ R̂efs = L̂oc→ P(L̂oc)

Figure 7 State space of the abstract interpreter with reference counting for λANF. Other compon-
ents preserve their definition given in Figure 5.

Figure 7 shows the updated abstract state space. Every state ς̂ has been augmented with
an additional component φ̂ς̂ that keeps track of the references between addresses. Defined
deterministically in terms of ς̂’s original components, this addition does not increase the
complexity of the state space explored by the abstract interpreter:

φ̂ς̂(l̂) = {l̂′ ∈ L̂oc | l̂′  ̂ς̂ l̂}

That is, φ̂(l̂) contains all addresses that refer directly to l̂. The actual reference count of l̂ is
obtained as |φ̂(l̂)|. Mapping the addresses in φ̂ to a set of addresses (P(L̂oc)) rather than an
actual reference count (N)4 renders our formalization more concise as well as amenable to
the incorporation of cycle detection (cf. Section 4). We introduce the following definitions:

(φ̂1 t φ̂2)(l̂) = φ̂1(l̂) ∪ φ̂2(l̂) ⊥
φ̂
= λl̂. ∅

We introduce the new transition relation (→̂arc) as a composition of an auxiliary transition
relation (→̂0) and a function ĉollect. The auxiliary relation (→̂0) extends the transition
relation (→̂) of Figure 6 by updating the references of addresses (in φ̂) for every update to
the store (or continuation store). The function ĉollect is responsible for collecting garbage as
reference counts become zero (i.e. |φ̂(l̂)| = 0 for some l̂) after every transition step of (→̂0).

ς̂ →̂0 ς̂
′ ς̂ ′′ = ĉollect(ς̂ , ς̂ ′)

ς̂ →̂arc ς̂
′′

Figure 8 shows the definition of the auxiliary transition (→̂0). Whenever the updated
transition rules need to insert a value v̂ (or continuation κ̂) at address l̂, they now add l̂ to
the set of references φ̂(l̂′) for every address l̂′ that is directly reachable from the new value v̂
(or continuation κ̂) that l̂ is bound to. These addresses can be computed using T̂P(Ĉlo)(v̂)
(or T̂K̂ont(κ̂)), where T̂ was defined in Section 2.2. While (→̂0) maintains φ̂ as intended, it
does not yet collect any garbage. Indeed, none of the transition rules in (→̂0) remove any
references to or from addresses, and the components σ̂, σ̂k and φ̂ only grow monotonically.

4 Note that it is not necessary to maintain a finite approximation such as N̂ = {0, 1,∞} for this
reference count. The key insight is to count the “abstract” references to an abstract address, not the
concrete references to the corresponding concrete address(es) that are approximated by that abstract
address. That is, our approach performs abstract interpretation with reference counting, not an abstract
interpretation of reference counting.
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â = âlloc(x, ς̂) â′k = âllock(e1, ς̂) ρ̂′ = ρ̂[x 7→ â]

κ̂ = 〈â, e2, ρ̂
′, âk〉 φ̂′ = φ̂ t

⊔
l̂∈T̂̂Kont(κ̂)

[l̂ 7→ {â′k}]

〈letx= e1 in e2, ρ̂, σ̂, σ̂k, âk, φ̂〉︸ ︷︷ ︸
ς̂

→̂0 〈e1, ρ̂, σ̂, σ̂k t [â′k 7→ κ̂], â′k, φ̂′〉
(E-Let)

â = âlloc(x, ς̂) Â(f, ρ̂, σ̂) 3 〈λx.e′, ρ̂′〉

Â(ae, ρ̂, σ̂) = v̂ φ̂′ = φ̂ t
⊔

l̂∈T̂
P(Ĉlo)

(v̂)

[l̂ 7→ {â}]

〈f ae, ρ̂, σ̂, σ̂k, âk, φ̂〉︸ ︷︷ ︸
ς̂

→̂0 〈e′, ρ̂′[x 7→ â], σ̂ t [â 7→ v̂], σ̂k, âk, φ̂′〉
(E-Call)

Â(ae, ρ̂, σ̂) = v̂ σ̂k(âk) 3 〈â, e′, ρ̂′, â′k〉 φ̂′ = φ̂ t
⊔

l̂∈T̂
P(Ĉlo)

(v̂)

[l̂ 7→ {â}]

〈ae, ρ̂, σ̂, σ̂k, âk, φ̂〉 →̂0 〈e′, ρ̂′, σ̂ t [â 7→ v̂], σ̂k, â′k, φ̂′〉
(E-Return)

Figure 8 Auxiliary transition relation (→̂0) for abstract reference counting in λANF.

Recall that garbage is defined as all addresses that are not reachable, i.e., all addresses
that are not in R̂(ς̂) = {l̂′ ∈ L̂oc | l̂ ∈ T̂Σ̂(ς̂) ∧ l̂

∗
 ̂ς̂ l̂

′}. We refer to T̂Σ̂(ς̂) as the root set
of addresses for a given state ς̂. Whenever ς̂ transitions to ς̂ ′, the root set changes from
T̂Σ̂(ς̂) to T̂Σ̂(ς̂ ′), which creates garbage when an address l̂ that was in T̂Σ̂(ς̂) is no longer in
T̂Σ̂(ς̂ ′) and l̂ is not referenced from any other address (i.e., |φ̂ς̂′(l̂)| = 0). When this happens,
the abstract interpreter needs to garbage collect l̂ by removing it from the store. Garbage
collecting an address l̂ also removes l̂ from φ̂ς̂′(l̂′) for every l̂′ ∈ L̂oc where l̂  ̂ς̂′ l̂′. This is
akin to decrementing the reference count of all addresses l̂′ referenced by l̂. The update can
cause other addresses to be garbage collected because they no longer have any references.
Note that φ̂ only takes into account references coming from other addresses; we take care
of root references using the function ĉollect : Σ̂arc × Σ̂arc → Σ̂arc, which removes all garbage
from ς̂ ′ that is created due to a change in the root set (from T̂Σ̂(ς̂) to T̂Σ̂(ς̂ ′)) as ς̂ →̂0 ς̂

′.

ĉollect(ς̂ , ς̂ ′) = 〈eς̂′ , ρ̂ς̂′ , σ̂ς̂′ \ Ĝ, σ̂kς̂′ \ Ĝ, âkς̂′ , φ̂′〉where 〈φ̂′, Ĝ〉 = ĉheck*(T̂Σ̂(ς̂), ∅, φ̂ς̂′)

ĉheck*(Ĉ, Ĝ, φ̂) =
{
〈φ̂, Ĝ〉 if Ĉ = ∅
ĉheck(l̂, Ĉ \ {l̂}, Ĝ, φ̂) otherwise, for any l̂ ∈ Ĉ

ĉheck(l̂, Ĉ, Ĝ, φ̂) =
{
d̂ealloc(l̂, Ĉ, Ĝ, φ̂) if |φ̂(l̂)| = 0 ∧ l̂ 6∈ T̂Σ̂(ς̂ ′)
ĉheck*(Ĉ, Ĝ, φ̂) otherwise

d̂ealloc(l̂, Ĉ, Ĝ, φ̂) = ĉheck*(Ĉ ∪ Ŝ, Ĝ ∪ {l̂}, φ̂	
⊔
l̂′∈Ŝ

[l̂′ 7→ {l̂}]) where Ŝ = {l̂′ | l̂  ̂ς̂′ l̂′}

We use the notation for set removal to remove elements from a map m, so that (m\S)(x) = ∅
if x ∈ S and (m\S)(x) = m(x) if x /∈ S. We define (φ̂1	 φ̂2)(l̂) = φ̂1(l̂)\ φ̂2(l̂) to conveniently
update φ̂ when references are removed (due to addresses being garbage collected).
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The function ĉollect checks for every address l̂ ∈ T̂Σ̂(ς̂) whether it is still referenced by at
least one other address (|φ̂ς̂′(l̂)| > 0) or whether it is still part of the root set (l̂ ∈ T̂Σ̂(ς̂ ′)).
If this is not the case, then it should garbage collect l̂ and update φ̂ to remove l̂ from φ̂(l̂′)
for every l̂′ where l̂  ̂ς̂′ l̂′, and recursively apply the same check for every such l̂′. Finally,
ĉollect(ς̂ , ς̂ ′) returns a new state ς̂ ′′ by removing all garbage from σ̂ς̂′ and σ̂kς̂′ and by updating
φ̂ς̂′ to take into account the removed references.

One can verify from the definitions of (→̂0) and ĉollect that the φ̂-component is always
updated correctly. That is, for every state ς̂ ∈ Σ̂arc, (→̂arc), they maintain the invariant
φ̂ς̂(l̂) = {l̂′ | l̂′  ̂ς̂ l̂}, so that we can reason about φ̂(l̂) as the set of addresses that refer to l̂.

3.2 Properties of (→̂arc)
We now show that – in the absence of cycles – (→̂arc) is garbage-free, which means that
abstract reference counting results in a garbage-free abstract interpreter.

First, we show that the garbage collection is sound. In terms of abstract garbage collection,
soundness means that addresses that are reachable are not removed from the store [42]. Using
the definitions of Section 2.2, this means that for every state ς̂ it collects only unreachable
addresses l̂ /∈ R̂(ς̂), so that R̂(ς̂) ⊆ Ŝ(ς̂). Intuitively, this implies that the garbage collection
is safe, and never removes a binding that is still needed.

I Definition 4 (GC Soundness). A state ς̂ is sound iff R̂(ς̂) ⊆ Ŝ(ς̂). A transition relation
(→̂) is sound iff it preserves soundness, i.e., if ς̂ is sound and ς̂ →̂ ς̂ ′, then ς̂ ′ is sound.

I Lemma 5. (→̂arc) is sound.

Proof. The proof is detailed in Appendix A. J

We refer to the dual of sound garbage collection as complete garbage collection. In the
context of abstract GC, completeness means that all addresses that are in the store are still
reachable. For every state ς̂, a complete garbage collector collects all addresses l̂ /∈ R̂(ς̂),
so that Ŝ(ς̂) ⊆ R̂(ς̂). Intuitively, this implies that the garbage collection never misses any
garbage, only keeping non-garbage values in the store at all times. We show that (→̂arc) is
GC complete in the absence of cycles.

I Definition 6 (GC Completeness). A state ς̂ is complete iff Ŝ(ς̂) ⊆ R̂(ς̂). A relation (→̂) is
complete iff it preserves completeness, i.e. if ς̂ is complete and ς̂ →̂ ς̂ ′, then ς̂ ′ is complete.

I Lemma 7. In the absence of cycles, (→̂arc) is complete.

Proof. The proof is detailed in Appendix A. J

Note that combining GC soundness with GC completeness yields the garbage-free property.
That is, if a state ς̂ is both sound and complete, we have that R̂(ς̂) ⊆ Ŝ(ς̂) and Ŝ(ς̂) ⊆ R̂(ς̂),
hence R̂(ς̂) = Ŝ(ς̂) so that ς̂ by definition is garbage-free. An abstract interpreter that
applies abstract tracing GC (as in Section 2.2), but not at every step, is GC sound, but not
GC complete, and therefore not garbage-free. Similarly, abstract reference counting in the
presence of cycles is still GC sound (Lemma 5), but not GC complete, nor garbage-free.

I Theorem 8. In the absence of cycles, (→̂arc) is garbage-free.

Proof. Follows immediately from Lemma 5 and Lemma 7. J
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We have now shown that – in the absence of cycles – using (→̂arc) as a transition relation
results in a garbage-free abstract interpreter without the need to trigger a full tracing GC at
every step. Normally, we would still have to prove other properties of (→̂arc) (such as the
soundness of the abstract interpretation); instead, we prove an equivalence with the existing
transition relation (→̂Γ̂), for which such properties have already been established in related
work [23, 42]. First, we introduce a function r̂c : Σ̂→ Σ̂arc to map states from the abstract
interpreter in Section 2.2 to equivalent states in Σ̂arc with the following definition:

r̂c(ς̂) = 〈eς̂ , ρ̂ς̂ , σ̂ς̂ , σ̂kς̂ , âk, φ̂〉 where φ̂(l̂) = {l̂′ ∈ L̂oc | l̂′  ̂ς̂ l̂}

I Theorem 9. In the absence of cycles, the transition relation (→̂arc) is equivalent to (→̂Γ̂)
in the sense that: ∀ς̂ , ς̂ ′ ∈ Σ̂, ς̂ →̂Γ̂ ς̂ ′ ⇐⇒ r̂c(ς̂) →̂arc r̂c(ς̂ ′).

Proof. The proof is detailed in Appendix A. J

As a consequence, we can design a garbage-free abstract interpreter using (→̂arc) by defining

êvalarc(e) = {ς̂ ∈ Σ̂arc | 〈e, [],⊥σ̂,⊥σ̂k
, âhalt,⊥φ̂〉

∗
→̂arc ς̂}

so that for every program e that, in the absence of cycles, êvalarc(e) =
{
r̂c(ς̂) | ς̂ ∈ êval(e)

}
.

4 Reclaiming Garbage Cycles

In the previous section, we showed that the (→̂arc) transition relation is garbage-free under the
premise that no states are encountered with cycles in their store or continuation store. The
underlying reason for this limitation is that pure reference counting cannot reclaim cycles [50].
However, it is clear that this premise does not hold in general. A concrete interpreter can
end up with cycles in the store σ when a program creates cyclic data structures. In this case,
abstract interpretation of this program will also result in a cyclic structure in σ̂, which will
never be reclaimed using (→̂arc). Hence, in general the transition relation (→̂arc) is only GC
sound, not GC complete and therefore also not garbage-free.

4.1 Artificial Cycles in (→̂arc)
To make matters worse, we can show that cycles are much more common in the abstract.
That is, for a given program e, an abstract interpreter may encounter states with cycles in
either σ̂ (or σ̂k) that would not occur in σ (or σk) in states explored by a concrete interpreter.
The underlying reason is that an abstract interpreter can only use a finite number of addresses,
and therefore is sometimes forced to reuse an address for different allocations.

From a theoretical perspective, this implies that an abstract address (∈ L̂oc) is used as
the abstraction for multiple concrete addresses (∈ Loc). We assume that abstraction function
α : Loc → L̂oc maps a concrete address l to the abstract address l̂, while concretization
function γ : L̂oc→ P(Loc) returns all concrete addresses that are abstracted to an abstract
address. It can be shown from the abstract semantics [23] that if l1 references l2 (l1  l2)
under concrete interpretation, then α(l1) references α(l2) under abstract interpretation too
(α(l1)  ̂ α(l2)). Now consider the linear sequence of concrete references l0  l1  . . . lk
with l0 6= l1 6= . . . 6= lk. Its abstraction α(l0)  ̂ α(l1)  ̂ . . .  ̂ α(lk) becomes cyclic as soon
as for some i 6= j, α(li) = α(lj). We refer to the cycles that lack a concrete counterpart and
stem from the interpreter’s abstraction as artificial cycles.
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In practice, it turns out that artificial cycles are mostly a problem in the continuation
store. Consider the E-Let transition rule. This transition rule “pushes” a continuation on
the continuation store, so that if ς → ς ′, we have that akς′  akς . As kalloc always returns a
fresh address under concrete interpretation, a sequence of transitions of this rule will give rise
to akn  akn−1  . . . ak0 where akn 6= akn−1 6= . . . 6= ak0. Under abstract interpretation,
in contrast, the same sequence will result in α(akn)  ̂ α(akn−1)  ̂ . . .  ̂ α(ak0). A cycle
will be created as soon as k̂alloc allocates the same address more than once in such a sequence
(i.e., once α(aki) = α(akj) for some 0 ≤ i < j ≤ n). This is usually the case when the
abstract interpreter visits the same program location multiple times due to, for instance,
looping behavior. When the resulting cycle becomes unreachable, none of its constituent
addresses will be reclaimed under (→̂arc) from the continuation store where they cause
imprecisions. While imprecision in the value store σ̂ may be tolerable, imprecision in the
continuation store σ̂k has a detrimental impact. The E-Return transition rule, for instance,
will generate spurious successor states if set σ̂k(âk) contains “garbage continuations” due to
such imprecision resulting in the exploration of infeasible control flow with an impact on
both precision and performance.

4.2 Abstract Reference Counting with Cycle Detection: (→̂arc++)
We extend (→̂arc) so that it remains GC complete in the presence of cycles. Existing
techniques for reference counting to reclaim cycles do not immediately help in this setting
(cf. Section 6). We therefore propose a domain-specific solution that is tailored towards the
artificial cycles that are artefacts of abstraction. First, we make a few observations:

As discussed above, cycles are the most prevalent in the continuation store. Not reclaiming
such cycles impacts precision and performance negatively. Our main priority is therefore
the continuation store. While realizing the garbage-free property requires cycle detection
in both stores, we show that its application to the continuation store does not have a
significant performance overhead (cf. Theorem 10).
An artificial cycle can only be created when an address is reused, and address reuse often
results in a cycle in practice. In a garbage-free abstract interpreter, reusing an address in
the continuation store is guaranteed to create a cycle.
The transition rules in (→̂0) only make the stores grow monotonically; elements are only
removed from the store when addresses are garbage collected. As a consequence, cycles
never “break up”, because if some address that is part of a cycle is collected as garbage,
then by the definition of garbage the entire cycle should be collected.

Hence, while it is not obvious how to detect when a cycle becomes a garbage cycle, it is
possible to predict the creation of a cycle efficiently. Therefore, our approach explicitly tracks
all cycles – or rather strongly connected components (SCC) – in Ŝ(ς̂). Such cycles can only
grow when two SCCs are merged together, or be removed in their entirety when collected as
garbage, enabling maintaining a disjoint-set of the SCCs in Ŝ(ς̂) efficiently. The idea is then
to maintain the reference count for every SCC, only counting “external” references coming
from other SCCs. When a SCC loses all of its external references, all addresses that are part
of that SCC can be garbage collected. As a cycle can by definition never occur between two
SCCs, applying reference counting at this level overcomes its main limitation.

Figure 9 depicts the updates to the state space Σ̂arc that incorporate cycle detection.
Newly-added component π̂ tracks the partitioning of Ŝ(ς̂) into its SCCs.
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ς̂ ∈ Σ̂arc+ = Exp× Ênv× Ŝtore

× K̂Store× K̂Addr

× R̂efs ×D̂S

ŝ, ŝcc ∈ ŜCC = P(L̂oc)

φ̂ ∈ R̂efs = ŜCC ⇀ P(L̂oc)

π̂ ∈ D̂S = P(ŜCC)

Figure 9 Updated state space of the abstract interpreter with reference counting to detect cycles.
Other components preserve the original definition from Figure 7.

The abstract interpreter needs to maintain disjoint-set π̂ so that
⋃
ŝcc∈π̂ ŝcc = L̂oc and

for any ŝ1, ŝ2 ∈ π̂ where ŝ1 6= ŝ2, ŝ1 ∩ ŝ2 = ∅. In what follows, we assume that functions
union and find (for which efficient implementations have been proposed [19]) exist, so that:

union(π̂, ŝ1, ŝ2) = (π̂ \ {ŝ1, ŝ2}) ∪ {ŝ1 ∪ ŝ2} find(π̂, l̂) = ŝcc where ŝcc ∈ π̂ ∧ l̂ ∈ ŝcc

The original definition of φ̂ from Section 3.1 also changes in that it now tracks all incoming
references for every strongly connected component from the other SCCs. Note again that the
state space does not increase in complexity, since both φ̂ς̂ and π̂ς̂ are defined deterministically
in terms of ς̂’s other components:

φ̂ς̂(ŝcc) = {l̂′ ∈ L̂oc | l̂′ 6∈ ŝcc ∧ ∃l̂ ∈ ŝcc, l̂′  ̂ς̂ l̂} for ŝcc ∈ π̂ς̂ ⊥
φ̂
= λŝcc. ∅

∀l̂1, l̂2 ∈ L̂oc, find(π̂ς̂ , l̂1) = find(π̂ς̂ , l̂2) ⇐⇒ (l̂1
∗
 ̂ς̂ l̂2∧ l̂2

∗
 ̂ς̂ l̂1) ⊥

π̂
= {{l̂} | l̂ ∈ L̂oc}

Transition relation (→̂0) of Figure 8 needs to be updated to maintain the π̂ and φ̂

components. Previously in (→̂0), whenever a reference from address l̂from to a set of
addresses Ŝ was added to the store, φ̂ was updated to φ̂ t

⊔
l̂to∈Ŝ

[l̂to 7→ {l̂from}]. For the
new auxiliary transition relation (→̂0), we replace this update with a call to the function
extend(l̂from,Ŝ,φ̂,π̂). The full definition of (→̂0++) can be found in Appendix B.

The extend function in Algorihm 1 checks if SCCs are merged together when either the
store or continuation store is extended. For every new reference from l̂from to l̂to that is
added to the store, it calls the function update to detect if a new cycle has been created
and to update φ̂ and π̂ accordingly. The update function initiates a backward search for
the SCC of l̂to, starting from the SCC of l̂from. All strongly connected components that can
be traversed in a path from l̂from to l̂to need to be merged together in π̂ (using union), since

such a path implies that a cycle is created as l̂to
∗
 ̂ l̂from and l̂from  ̂ l̂to (due to the new

reference from l̂from to l̂to that was added to the store). During this traversal, update also
keeps track of all incoming references to this newly created SCC, so that it can immediately
update φ̂ as well. If no such path is found, l̂from and l̂to are not part of the same SCC, so
that π̂ remains unchanged and φ̂ is updated as in (→̂0). Note that the check ŝcc ∈ V is only
there to prevent redundant work when a SCC has already been visited through a different
path; its purpose is not to prevent an infinite looping of search, which can not happen as
there are no cyclic paths between SCCs.

Of course, performing cycle detection through a search comes at a cost, especially when
looking at the theoretical worst-case behaviour. In practice, however, the advantages of being
able to reclaim garbage cycles appear to outweigh this cost (cf. Section 5.2). Note that the
backward search is only initiated when an address is being reused, as for a fresh address l̂,
there are no incoming references to traverse (i.e., φ̂(find(π̂, l̂)) = ∅). As address reuse often
creates a cycle, incorporating cycle detection usually pays off. In fact, for the continuation
store, we can state this more formally in Theorem 10.
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Algorithm 1: Cycle detection in (→̂0++).
function update(l̂from ,̂lto,φ̂,π̂):

V ← ∅ ; I ← φ̂(find(π̂, l̂to))
function search(l̂):

ŝcc← find(π̂, l̂)
if ŝcc = find(π̂, l̂to) then return true
if ŝcc ∈ V then return false
V ← V ∪ {ŝcc}
reachable← false
incoming ← ∅
foreach l̂′ ∈ φ̂(ŝcc) do

if search(l̂′) then reachable← true
else incoming ← incoming ∪ {l̂′}

end
if reachable then

π̂ ← union(ŝcc, find(π̂, l̂to))
I ← I ∪ incoming

end
return reachable

if search(l̂from) then
return 〈φ̂|̂

π
t [find(π̂, l̂to) 7→ I], π̂〉

else
return 〈φ̂ t [find(π̂, l̂to) 7→ {l̂from}], π̂〉

function extend(l̂from,Ŝ,φ̂,π̂):
foreach l̂to ∈ Ŝ do

if l̂from /∈ φ̂(find(π̂, l̂to)) then
〈φ̂, π̂〉 ←update(l̂from ,̂lto,φ̂,π̂)

end
return 〈φ̂, π̂〉

I Theorem 10. In a garbage-free abstract interpreter, extending abstract reference counting
with cycle detection for the continuation store only requires amortized O(1) additional
operations per continuation that is added to the continuation store.

Proof. The proof is detailed in Appendix A. J

The intuition here is that every reference that is inserted into σ̂k can only be traversed
once during the backward search of the cycle detection: once traversed, we can show that it
is guaranteed to become part of a cycle (cf. proof of Theorem 10 in Appendix A). Since the
internal references of a cycle are not traversed by the backward search, it can no longer add
to the cost of a future traversal once the SCCs are merged. That is, when a backward search
is triggered in the continuation store, we are guaranteed that all traversed edges between
SCCs will become part of the same SCC after cycle detection, hence the path is shortened for
future traversals. In practical terms, Theorem 10 states that cycle detection can be applied
to the continuation store “for free”, i.e., without much of an additional cost in performance.

Finally, we can define (→̂arc++) as we did previously for (→̂arc):

ς̂ →̂0++ ς̂ ′ ς̂ ′′ = ĉollect(ς̂ , ς̂ ′)
ς̂ →̂arc++ ς̂ ′′

where ĉollect remains mostly unchanged, save for some trivial modifications to work at the
level of SCCs. We refer to Appendix B for the updated definition of ĉollect.
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Unlike (→̂arc), we can show that using the transition relation (→̂arc++) results in a garbage-
free abstract interpreter, even in the presence of cycles. This is stated by Theorem 11.

I Theorem 11. (→̂arc++) is garbage-free.

Proof. The proofs of Lemma 5 and 7 can be repeated for (→̂arc++), replacing addresses with
their strongly connected components where necessary. The premise of Lemma 7 that disallows
cycles can then be omitted, since cycles by definition do not occur between SCCs. J

Moreover, we can now claim full equivalence of (→̂Γ̂) and (→̂arc++). First, define r̂c as:

r̂c(ς̂) = 〈eς̂ , ρ̂ς̂ , σ̂ς̂ , σ̂kς̂ , âk, φ̂, π̂〉 where

φ̂(ŝcc) = {l̂′ ∈ L̂oc | l̂′ 6∈ ŝcc ∧ ∃l̂ ∈ ŝcc, l̂′  ̂ς̂ l̂} for ŝcc ∈ π̂

∀l̂1, l̂2 ∈ L̂oc, find(π̂, l̂1) = find(π̂, l̂2) ⇐⇒ (l̂1
∗
 ̂ς̂ l̂2 ∧ l̂2

∗
 ̂ς̂ l̂1)

I Theorem 12. (→̂arc) is equivalent to (→̂Γ̂) : ∀ς̂ , ς̂ ′ ∈ Σ̂, ς̂ →̂Γ̂ ς̂
′ ⇐⇒ r̂c(ς̂) →̂arc++ r̂c(ς̂ ′).

Proof. The proof is analogous to that of Theorem 9. J

5 Evaluation

We have already proven the GC soundness and GC completeness of our approach (Lemmas 5
and 7), as well as a theoretical efficiency claim of the cycle detection technique for the
continuation store (Theorem 10). We now present the empirical evaluation. Section 5.2
measures the impact of the cycle detection technique on abstract reference counting, while
Section 5.3 compares its precision and performance to existing approaches to abstract GC.

5.1 Experimental Setup
We ran all experiments using Scala version 2.12.3 on a server with a 3.5GHz Intel Xeon 2637
processor and 256GB of RAM. We use a similar setup throughout our evaluation.

Implementation. We implemented both abstract reference counting and the existing vari-
ants of abstract tracing GC (surveyed in Section 1.2) using the Scala-AM framework for
abstract interpretation of Scheme programs [54, 53]. This resulted in 5 abstract interpreters5,
each incorporating the Scheme equivalent of the λANF transition relations (→̂) and (→̂Γ̂)
(cf. Section 2), (→̂arc) (cf. Section 3) and (→̂arc++) (cf. Section 4), as well as the additional
(→̂ΓCFA) and (→̂arc+) relations defined below:

(→̂ΓCFA) adopts the GC policy of ΓCFA [42], which applies abstract GC whenever values
need to be joined in the store, so that values are by design never merged with garbage.
While this approach is not garbage-free (cf. Section 1.2), it is interesting to examine how
this common policy affects the precision and performance of the abstract interpreter.
(→̂arc+) adopts abstract reference counting, but only applies cycle detection to the
continuation store σ̂k. As garbage cycles will remain in value store σ̂, this relation is
not garbage-free. However, its empirical evaluation is motivated by our observation
that garbage cycles are mainly an issue in the continuation store, and by our proof for
Theorem 10 that cycle detection should have no major performance overhead there.

5 Publicly available at https://github.com/noahvanes/scala-am-abstractgc
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Benchmarks. We evaluate the above implementations using a total of 16 Scheme programs;
11 from the Gabriel benchmark suite [18]6 and 5 from the built-in test suite of Scala-AM.
Table 1 lists the size of each Scheme program, with the Gabriel ones depicted in bold. For
each benchmark program, we configure each abstract interpreter with a monovariant allocator
(i.e., 0CFA), and a lattice that abstracts concrete values to the set of their possible types.

Table 1 Lines of code (LOC) for each benchmark. The Gabriel benchmarks are in bold.

Benchmark LOC Benchmark LOC Benchmark LOC Benchmark LOC

boyer 568 deriv 39 takl 18 gcipd 12
browse 78 destruc 37 puzzle 144 primtest 35
cpstak 19 diviter 8 triangl 40 rsa 41
dderiv 83 divrec 11 collatz 22 nqueens 34

Measurements. As the implementations differ only in their approach to abstract garbage
collection, we follow Earl et al. [16] in the use of the number of explored states as a measure
of precision. As garbage can cause an abstract interpreter to explore spurious states (cf.
Section 1.2), fewer states implies higher precision when all configuration parameters are kept
constant. For performance, we measure the total running time of the abstract interpreter.
Note that running time is impacted by two factors. First, the number of number states the
interpreter has to explore. Higher precision can often lead to higher performance. Second, the
rate at which the abstract interpreter is able to explore those states. This rate is influenced
by the overhead caused by abstract garbage collection, which we therefore also measure
per state. For the tracing GC approaches ((→̂Γ̂) and (→̂ΓCFA)), this measure corresponds
to the time spent in the function Γ̂. For approaches based on abstract reference counting
((→̂arc), (→̂arc+) and (→̂arc++)), this measure includes the time spent on updating the φ̂
and π̂ components (including cycle detection for (→̂arc+) and (→̂arc++)) and in the ĉollect
function. We ran every benchmark 30 times after a warm-up period of 2 minutes. For the
time-sensitive measurements, we report the mean of all runs.

5.2 Impact of Cycle Detection
Section 3 introduced transition relation (→̂arc) which performs abstract reference counting,
but cannot reclaim cycles. Section 4 extended this relation into (→̂arc++), which can reclaim
cyclic garbage by applying cycle detection to both stores. Transition relation (→̂arc+),
introduced above, is an in-between: it uses abstract reference counting, but only applies cycle
detection to the continuation store. Table 2 compares the corresponding abstract interpreters
to evaluate the impact of cycle detection on abstract reference counting.

Impact on precision. The results from Table 2 show that reclaiming garbage cycles from
the continuation store only, can already result in important precision improvements. For most
benchmarks, (→̂arc+) nearly achieves the same optimal precision as (→̂arc++). For instance,
all of the non-Gabriel benchmarks significantly improve precision with cycle detection for
the continuation store only, and adding cycle detection to the value store does not increase

6 We omitted the ctak benchmark program due to its use of call/cc, which is not yet supported by the
abstract interpretation framework.



N. Van Es, Q. Stiévenart, and C. De Roover 10:21

precision any further. In addition, for the triangl benchmark, not reclaiming garbage cycles
from the continuation store (using (→̂arc)) causes the state space to blow up. However, it is
clear that reclaiming them from the continuation store does not always suffice: benchmarks
destruc and puzzle both create cycles in the value store, which are not reclaimed by (→̂arc)
nor (→̂arc+). Programs that are written in CPS-style, such as cpstak, do not benefit from the
extra precision in the continuation store either, as their control flow is encoded in closures that
reside in the value store. The garbage-free transition relation (→̂arc++) improves precision
more consistently, due to its reclamation of all garbage cycles from both stores. These results
underline that cycles cannot be neglected in abstract reference counting, and that a technique
for their detection is required to realize the benefits of garbage-free abstract interpretation.

Table 2 Comparison of time taken in milliseconds (t; lower means better performance) and
number of states explored (#s; lower means better precision). A time of∞ means that the benchmark
exceeded the time limit of 30 minutes; in this case, we report the number of states explored when
the timeout was reached.

(→̂arc) (→̂arc+) (→̂arc++)
t #s t #s t #s

cpstak 1 94 1 94 1 88
diviter 13 163 14 163 14 162
divrec 15 153 14 146 16 145
destruc 1 208 61 021 1 160 61 021 304 17 344
triangl ∞ >2 186 761 2 044 2 639 1 613 2 639
puzzle 23 950 1 060 585 22 142 1 018 345 2 351 117 572
takl 14 375 862 833 3 581 188 552 2 791 188 549
browse ∞ >4 028 742 ∞ >2 586 788 ∞ >2 559 221
boyer ∞ >18 544 242 ∞ >12 690 008 ∞ >12 715 066
deriv ∞ >8 650 787 ∞ >28 905 027 ∞ >29 513 647
dderiv ∞ >11 561 462 ∞ >32 582 390 ∞ >32 803 534
collatz 1 60 1 60 1 60
gcipd 1 151 1 91 1 91
primtest 40 5 347 11 1 537 12 1 537
rsa 87 10 646 12 1 538 12 1 538
nqueens 1 207 112 579 319 31 883 338 31 857

Impact on performance. Figure 10 compares the time spent on GC per computed state
for the reference-counting transition relations. For most benchmarks, we observe that cycle
detection increases the GC overhead slightly. However, this overhead is negligible compared
to the corresponding improvements to precision. That is, the overheads in Figure 10 remain
comparable for different configurations on each benchmark, while the number of states
explored reported in Table 2 decreases significantly when using cycle detection. We observe
proportionally large improvements to performance, as the abstract interpreter has fewer states
to explore. Again, the garbage-free transition relation (→̂arc++) can most consistently improve
performance by completely avoiding any unnecessary computation, with only a negligible
increase in overhead. We conclude that the benefits of cycle detection outweigh its cost, as
(→̂arc++) is superior to both (→̂arc) and (→̂arc+) in terms of precision and performance.
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Figure 10 Comparison of overhead measured in time spent on GC per state (lower is better).
Error bars indicate the standard deviation of the mean of our measurements (for 30 runs). Note the
usage of a logarithmic scale on the y-axis.

Note that Table 2 also lists the number of states that were explored for the benchmarks
that did time out. This gives a rough estimate of the interpreters state exploration rate.
However, these rates should be interpreted with caution, as some paths in the state space
can be significantly cheaper to explore than others. One should therefore only compare the
rates of interpreters with the same precision, or look for a pattern of major discrepancies.
We do not discern such a pattern among the rates, and deem the differences in precision too
outspoken to warrant a direct rate comparison.

5.3 Comparison to Existing Policies for Abstract GC
Table 3 compares (→̂arc++) to other approaches to abstract garbage collection. On one end
of the spectrum, there is (→̂), which never applies abstract GC. On the other end, there is
(→̂Γ̂), which applies abstract GC on every evaluation step. An interesting tradeoff is made
by (→̂ΓCFA), which applies GC before every store join.

Table 3 Comparison of time taken in milliseconds (t; lower means better performance) and
number of states explored (#s; lower means better precision) by an abstract interpreter for different
approaches to abstract GC. A time of ∞ means that the benchmark exceeded the time limit of 30
minutes; in this case, we report the number of states explored when the timeout was reached.

(→̂) (→̂Γ̂) (→̂ΓCFA) (→̂arc++)

t #s t #s t #s t #s

cpstak 1 120 7 88 2 94 1 88
diviter 14 175 29 162 13 163 14 162
divrec 24 219 28 145 16 148 16 145
destruc 9 671 381 949 2 436 17 344 735 22 444 304 17 344
triangl ∞ >4 826 189 2 018 2 639 1 635 2 767 1 613 2 639
puzzle ∞ >104 243 260 24 704 117 572 14 732 293 167 2 351 117 572
takl 86 830 7 072 820 72 325 377 389 32 356 539 233 2 791 188 549
browse ∞ >6 608 260 ∞ >1 928 827 ∞ >2 706 491 ∞ >2 559 221
boyer ∞ >27 731 639 ∞ >232 889 ∞ >1 456 963 ∞ >12 715 066
deriv ∞ >107 328 548 ∞ >5 773 009 ∞ >13 262 924 ∞ >29 513 647
dderiv ∞ >90 849 930 ∞ >3 320 410 ∞ >12 954 310 ∞ >32 803 534
collatz 1 431 4 60 2 159 1 60
gcipd 3 1 098 8 91 2 147 1 91
primtest 2 249 334 944 166 1 537 75 3 622 12 1 537
rsa 1 840 247 915 176 1 538 63 2 375 12 1 538
nqueens 346 349 37 499 432 4 583 37 847 1 556 52 766 338 31 857



N. Van Es, Q. Stiévenart, and C. De Roover 10:23

Comparison of precision. Our results confirm the findings of previous work [42, 43, 16, 28]:
abstract GC reduces the state space to explore substantially. Looking at the number of
explored states in Table 3 reveals that the interpreter without abstract GC using (→̂) has
the lowest precision for every benchmark compared to all other approaches. The interpreter
using (→̂ΓCFA) sacrifices some precision by invoking abstract GC less frequently than (→̂Γ̂).
It explores more states than necessary because it is not garbage-free, which is the most
noticeable on more complex programs such as destruct, puzzle and takl.

Our approach, (→̂arc++), achieves the same optimal precision as (→̂Γ̂). As we have proven
that both transition relations are garbage-free and equivalent, they should explore the same
number of states. Note, however, that this is not the case for the takl benchmark – an
apparent contradiction of Theorem 12. The reason is that the implementation of (→̂arc++)
for Scheme is able to collect more garbage than its formalization for λANF in Sections 3 and 4.
The definition of garbage-free only requires the absence of garbage from the stores in between
transitions. However, more complex state transitions can create garbage and immediately
bring that garbage back to life within a single transition. Unlike our formalization for
λANF, some of the transition rules in our implementation for Scheme both lookup and insert
continuations at the same address âk in a single step. Abstract reference counting can
automatically deallocate âk (and addresses in the same SCC) if no references remain to âk
after the lookup, which possibly prevents a precision loss when âk (or another address in the
same SCC) is reallocated in the same step. Abstract reference counting can trivially reclaim
garbage within a single transition due to its continuous nature. Realizing the same effect
with abstract tracing GC (i.e., using (→̂Γ̂) and (→̂arc++)) would require a full GC application
both within and after such transitions – increasing its overhead further. We investigated
the applicability of this optimization on abstract reference counting for all benchmarks, and
found it limited to takl, browse, deriv, dderiv and nqueens. For the others, (→̂Γ̂) and (→̂arc++)
exhibit the same precision and explore the same state space.
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Figure 11 Comparison of overhead measured in time spent on GC per state (lower is better).
Error bars indicate the standard deviation of the mean of our measurements (for 30 runs). Note the
usage of a logarithmic scale on the y-axis.

Comparison of performance. Figure 11 compares the overhead of abstract GC for (→̂Γ̂),
(→̂ΓCFA) and (→̂arc++). The (→̂) interpreter does not suffer such overhead. However, without
any abstract GC, its state space becomes polluted (leading to repeated exploration of
equivalent states) and explodes (due to infeasible paths). It exhibits the worst performance.

The overhead of abstract GC is an issue for (→̂Γ̂). It is clear that a tracing GC application
is generally more expensive than a single evaluation step. Applying tracing GC after every
step leads to the interpreter’s running time being dominated by that of the GC applications.
This is outspoken on complex benchmarks that require larger heaps such as boyer : since
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tracing GC needs to traverse the entire heap, the overhead grows with the size of the heap.
For the boyer benchmark, the interpreter using (→̂arc++), which explores the same state space
as (→̂Γ̂) for this benchmark, explores 12.7M states before timeout, whereas with the excessive
GC overhead of (→̂Γ̂), it can only explore 233K states with the same time limit. While the
garbage-freeness of (→̂Γ̂) significantly improves overall performance of (→̂) by reducing the
state space, it is not as fast as (→̂arc++) due to the higher overhead. In Figure 11, for all
benchmarks the overhead of (→̂Γ̂) differs to that of (→̂arc++) by orders of magnitude, which
results in significant performance improvements in Table 3 while exploring the same amount
of states. The transition relation (→̂ΓCFA) avoids this overhead of (→̂Γ̂) by applying abstract
GC less frequently. As such, its overhead is significantly lower than that of (→̂Γ̂). For all our
benchmarks, this results in a performance improvement over (→̂Γ̂), despite having to explore
a larger state space. Note that (→̂ΓCFA) is no longer garbage-free and explores more states
than necessary. For instance, on the puzzle benchmark it almost explores 3 times as many
states as (→̂arc++). In addition, Figure 11 reveals that the overhead remains considerably
higher than that of (→̂) and even (→̂arc++). This can also be seen in the benchmarks that
timeout, where the difference in states explored is significant compared to (→̂) and even
(→̂arc++). In particular, the boyer benchmark also shows that it still scales poorly towards
larger heap sizes, an inherent downside of tracing GC approaches. Since both overhead and
number of states explored are higher than for (→̂arc++), the overall performance is worse.

In general, when determining an application policy for abstract tracing GC, sacrificing
garbage-freeness for increased performance implies lower precision. Using abstract reference
counting with (→̂arc++) gives the best of both worlds. Its low overhead is not detrimental to
performance: although there is definitely some compared to (→̂), it is consistently lower than
all other approaches that actually apply abstract GC. Compared to the equivalent transition
relation (→̂Γ̂) with optimal precision, overhead is reduced by orders of magnitude. The
overall performance of the triangl benchmark is an exception to the rule: even though the
GC overhead is greatly reduced when using (→̂arc++), its running time is mostly dominated
by expensive evaluation steps, but even in this case none of the other interpreters outperform
(→̂arc++). Since (→̂arc++) achieves the optimal precision, so that overall performance is not
impacted by the exploration of spurious states. Hence, our experiments show that (→̂arc++)
is superior both in terms of precision and performance.

6 Related Work

The focus of our work is a more efficient approach to abstract garbage collection. It relates
to previous work on concrete GC, abstract GC, and abstract interpretation in general.

Reference Counting. Our approach is based on the original formulation of reference count-
ing [10], without any common optimizations [50] such as deferred [15] and coalesced [35]
reference counting or “lazy freeing” [8]. As these optimizations postpone the reclamation of
garbage, they cannot be used for garbage-free abstract interpretation.

We perform abstract reference counting at the level of SCCs, so that garbage cycles can
be reclaimed. For concrete reference counting, two major techniques have been proposed to
handle cycles: using a back-up tracing garbage collector [56] and trial deletion [9]. We deem
both too expensive for frequent applications during abstract interpretation, which is required
to guarantee garbage-freeness. Nevertheless, it could be interesting to investigate a variant
of abstract reference counting where abstract tracing GC is applied at the evaluation steps
that might render a cycle into a garbage cycle. In the concrete, this has been shown [37] to
occur when a memory location loses some, but not all of its incoming references. A cheap
pre-analysis as in [3] could identify the structures guaranteed to be acyclic beforehand.
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Confusingly, the term “abstract reference counting” has been used with different meanings.
Hudak [24] formalizes reference counting for a concrete interpreter. After abstraction, he
obtains a static analysis that approximates the concrete reference count, enabling program
optimizations [25, 45] and compile-time GC [32]. The analysis exemplifies static analysis
of reference counting, rather than static analysis analysis with reference counting for the
purpose of improving precision and performance. Finally, Jones et al. [31] use the term to
abstract over the low-level details concrete implementations differ on.

Tracing Garbage Collection. Our main issue with tracing GC is that it requires frequent
heap traversals to keep the abstract interpreter garbage-free. Various techniques exist
for concrete interpreters to avoid the correspondingly long GC pauses and to improve
their throughput. Incremental algorithms, such as Baker’s incremental stop-and-copy al-
gorithm [33], only remove garbage lazily, and can therefore not be used in our setting.
Moreover, they would need to be redesigned for abstract interpreters which do not always
allocate a fresh address. Generational algorithms [36] can increase throughput by limiting
heap traversals to the young generations only. However, as garbage also arises in older ones,
it does not suffice to keep the abstract interpreter garbage-free. A full GC would be required
to prevent precision loss for addresses that are re-allocated in the old generation.

Abstract Garbage Collection. The ΓCFA analysis [42, 43] pioneered the concept of abstract
garbage collection. The term “garbage-free” was later coined in [23] to describe an abstract
interpreter that applies abstract GC at every evaluation step, eliminating all garbage. ΓCFA
also incorporated abstract counting ––not to be confused with abstract reference counting –
to count how often an address has been allocated. Abstract counting combines well with
abstract GC, as collecting garbage results in more precise (i.e., lower) abstract counts. It
can be combined directly with abstract reference counting to the same effect.

We showed that garbage-free abstract interpretation prevents imprecision and improves
the interpreter’s performance by limiting exploration to garbage-free states. As such, it
improves what is known as localization [48]; unnecessary store bindings are removed so that
states with irrelevant store differences need not be explored multiple times. For similar
purposes, Oh et al. [47] eliminate store bindings in their analysis based on which addresses
can be used. The main difference with our and other approaches to abstract GC is the use
of a pre-analysis to conservatively approximate which bindings are never used and can safely
be removed as garbage. The technique can be combined with reachability-based approaches,
such as abstract reference counting, to further improve localization and precision. Might et
al. [41] proposed a similar extension to abstract GC, named conditional abstract GC, which
only keeps bindings in the store that are reachable and satisfy certain conditions. However,
it relies on a theorem prover and has to the best of our knowledge not yet been implemented.

In Knauel’s abstract interpretation framework [34], the overhead of tracing GC turned
proved performance-detrimental on complex programs. The proposed solution is a global
garbage collector which collects garbage for multiple states at once with a global root set. Of
course, this sacrifices many of the precision benefits of the GC. To our knowledge, no prior
work has employed abstract reference counting as a more efficient approach to garbage-free
abstract interpretation, despite reference counting being mentioned in the future work of [42].
Bergstrom et al. [6, 7] employ a primitive form of reference counting as a cheaper alternative
to full abstract GC. Their control-flow analysis (without explicit store component) tracks for
every variable if it has been captured by the lexical environment of another closure; if not,
this variable can safely be collected once it goes out of scope. Compared to our approach,
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this corresponds to abstract reference counting with reference counts from N̂ = {0, 1,∞}.
We have shown that such an approximation is unnecessary, as the precise reference count
can be maintained without having to increase the complexity of the state space.

Abstract Interpretation. Many abstract interpreters incorporate global store widening [23]
to terminate within reasonable time. Unfortunately, previous work [28] has shown that store
widening and abstract GC do not combine well: abstract GC can collect fewer addresses, as
it needs to account for reachability from multiple states, and store widening can no longer
guarantee fast convergence, as the GC violates the monotonicity of the global store. In fact,
an often overlooked consequence of abstract GC is that it no longer suffices for lattices to
conform to the ascending chain condition; as GC can “descend” into lattices, the analysis is
no longer monotonous, and the only way to guarantee termination is to use finite lattices.

Other work [16, 28] has been able to combine abstract GC successfully with pushdown
analysis, which substantially increases control-flow precision by properly matching call and
return sites. The combination yields “better-than-both-worlds” improvements, although
the techniques’ inherent incompatibilities need to be overcome. We leave an analogous
combination with abstract reference counting open for future work.

Finally, abstract counting can be exploited to enable strong updates [38, 4]. Replacing join
operations in the store with overwrites when possible increases precision. Note, however, that
such strong updates break the assumption in Section 4 that stores only grow monotonically
without GC. To support strong updates, our cycle detection technique therefore needs to be
adapted to take into account the possibility that a SCC can break up when a strong update
occurs within a single SCC (although this cannot happen in the continuation store).

Incremental Cycle Detection. To reclaim garbage cycles, our approach detects cycles as
references are added to the store. We implement such incremental cycle detection using
a simple backward search, which has suboptimal worst-case performance in theory. More
advanced algorithms have been proposed [22, 5] with better asymptotic performance. However,
empirical evidence suggests [52] that more complicated algorithms do not always perform
better in practice for some situations. Indeed, in Section 4.2 we argued that backward
searching usually works well for an abstract interpreter, and we verified this empirically in
Section 5.2. Nevertheless, it would be interesting for future work to explore whether other
incremental cycle detection algorithms can be more efficient for an abstract interpreter.

7 Conclusion

We have introduced abstract reference counting as a more efficient approach to abstract
garbage collection. Existing approaches are based on tracing GC, which is non-continuous in
nature, and therefore need to trade-off either precision or performance to strike the balance
between the benefits and overhead of abstract GC. Our approach based on reference counting,
in contrast, requires but minor bookkeeping yet is provably sound and complete in terms of
abstract GC. The result is a garbage-free abstract interpreter that is as precise as one that
applies tracing GC at every step – in the absence of cycles.

However, we showed that cycles are a major threat to the garbage-freeness of abstract
reference counting. Next to those arising under concrete interpretation, the address allocator
of an abstract interpreter can create many artificial cycles. We proposed cycle detection as a
solution, maintaining the reference counts at the level of the strongly connected components
in the stores. This enables the reclamation of garbage cycles, which is necessary to make
abstract reference counting garbage-free.
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In terms of precision, our empirical experiments confirm our claim on the garbage-freeness
of the abstract interpreter, showing that it achieves the optimal precision for abstract garbage
collection. In terms of performance, abstract reference counting – even with cycle detection –
greatly reduces overhead by avoiding frequent heap traversals. Without sacrificing precision,
it can therefore realize significant performance improvements in abstract interpretation.
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A Proofs

We detail here the proofs of Theorems 1, 9 and 10, as well as the proofs of Lemmas 5 and 7.

I Theorem 1. If ς0
n−→Γ ς1 and ς0

n−→ ς2, then ς1 = Γ(ς2).

Proof. This follows directly from theorems in [42]: both (→) and (→Γ) = (Γ ◦ (→)) are
subsets of the non-deterministic transition relation (V). Hence, by Theorem 6.10 of [42],
Γ(ς1) = Γ(ς2) and by Lemma 6.8 of [42] and the definition of (→Γ), Γ(ς1) = ς1, so that
ς1 = Γ(ς2). Both proofs of Theorem 6.10 and Lemma 6.8 in [42] are presented for a simple
CPS-language, but can be repeated mutatis mutandis for λANF. J

I Lemma 5. (→̂arc) is sound.

Proof. Assuming ς̂ is sound and ς̂ →̂arc ς̂
′, by inversion we have that ∃ς̂0 so that ς̂ →̂0 ς̂0

and ς̂ ′ = ĉollect(ς̂ , ς̂0). A trivial case analysis of (→̂0) shows that (→̂0), and therefore also ς̂0
are sound. We show that whenever ĉollect adds an address l̂ to Ĝ, we have that l̂ 6∈ R̂(ς̂0),
so that by induction ∀l̂ ∈ Ĝ : l̂ 6∈ R̂(ς̂0). It is clear that whenever we add l̂ to Ĝ, every
l̂′ ∈ φ̂ς̂0(l̂) must have already been deleted from φ̂ς̂0(l̂), which implies that l̂′ ∈ Ĝ. Hence, for
every predecessor l̂′ ∈ φ̂ς̂0(l̂) we have that l̂′ 6∈ R̂(ς̂0), and since l̂ can only deallocated when
l̂ 6∈ T̂Σ̂(ς̂0), it must be that l̂ 6∈ R̂(ς̂0). By the soundness of ς̂0, we have that R̂(ς̂0) ⊆ Ŝ(ς̂0).
Since we have just shown that ĉollect only removes addresses from ς̂0 that are not in R̂(ς̂0),
we get R̂(ς̂0) ⊆ Ŝ(ς̂ ′) and R̂(ς̂ ′) = R̂(ς̂0), so that R̂(ς̂ ′) ⊆ Ŝ(ς̂ ′), hence ς̂ ′ is sound. J

For convenience, we define φ̂∗ς̂ (l̂) = {l̂′ | l̂′
∗
 ̂ς̂ l̂} \ {l̂}, so that φ̂∗ς̂ (l̂) is the set of all

addresses that can directly or indirectly reach l̂ (excluding l̂ itself).

I Lemma 7. In the absence of cycles, (→̂arc) is complete.
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Proof. Assume that ς̂ →̂arc ς̂
′, where ς̂ →̂0 ς̂0 and ς̂ ′ = ĉollect(ς̂ , ς̂0). We need to prove that

Ŝ(ς̂ ′) ⊆ R̂(ς̂ ′). Let l̂ be an address in Ŝ(ς̂ ′). If l̂ 6∈ Ŝ(ς̂), then l̂ was added to the store or
continuation store by one of the transition rules in (→̂0): it is clear that in any of those cases,
we also have that l̂ ∈ R̂(ς̂ ′). If l̂ ∈ Ŝ(ς̂), then by completeness of ς̂, we have that l̂ ∈ R̂(ς̂).
Proceed by induction on |φ̂∗ς̂′(l̂)|. For the case |φ̂∗ς̂′(l̂)| = 0, by definition of φ̂∗ and φ̂ we also
have that |φ̂ς̂′(l̂)| = 0. If |φ̂ς̂(l̂)| = 0, then l̂ was checked by ĉollect because it must have been
that l̂ ∈ T̂Σ̂(ς̂) (since l̂ ∈ R̂(ς̂)); if |φ̂ς̂(l̂)| > 0, then l̂ was also checked because every address
in φ̂ς̂(l̂) got removed, which caused l̂ to be added to Ĉ. Since in both cases l̂ was not removed
after the check (where φ̂(l̂) = ∅) it must have been that l̂ ∈ T̂Σ̂(ς̂ ′), and hence l̂ ∈ R̂(ς̂ ′). For
the case |φ̂∗ς̂′(l̂)| = k > 0, we have that |φ̂ς̂′(l̂)| > 0. Pick any predecessor l̂′ ∈ φ̂ς̂′(l̂); in the
absence of cycles, a predecessor always has fewer ancestors, i.e. |φ̂∗ς̂′(l̂′)| < k, so that by the
induction hypothesis we get that l̂′ ∈ R̂(ς̂ ′). Since l̂′ ∈ R̂(ς̂ ′) and l̂′  ̂ς̂′ l̂ (by definition of
φ̂ς̂′(l̂)), we have that l̂ ∈ R̂(ς̂ ′). Hence, Ŝ(ς̂ ′) ⊆ R̂(ς̂ ′), i.e. ς̂ ′ is complete. J

I Theorem 9. In the absence of cycles, the transition relation, (→̂arc) is equivalent to (→̂Γ̂)
in the sense that: ∀ς̂ , ς̂ ′ ∈ Σ̂, ς̂ →̂Γ̂ ς̂ ′ ⇐⇒ r̂c(ς̂) →̂arc r̂c(ς̂ ′).

Proof. It is clear that the transition rules of (→̂0) are isomorphic to those of (→̂), and
that equivalence holds between both transition relations in that ∀ς̂ , ς̂0 ∈ Σ̂, ς̂ →̂ ς̂0 ⇐⇒
r̂c(ς̂) →̂0 r̂c(ς̂0). Both (→̂arc) and (→̂Γ̂) then remove addresses from σ̂ and σ̂k, and since both
are garbage-free, they produce the same states (since Ŝ(ς̂) = R̂(ς̂) in both cases). J

Note that we can never have a reference from an address â ∈ Âddr to an address in
âk ∈ K̂Addr; This implies that is ∀âk ∈ K̂Addr, âk ∈ R̂(ς̂) ⇐⇒ âkς̂

∗
 ̂ς̂ âk. Moreover, it

implies that a SCC consists either exclusively of addresses in Âddr or addresses in K̂Addr.
We denote π̂k for the partitioning π̂ limited to K̂Addr, i.e. π̂k = π̂ \ P(Âddr).

I Theorem 10. In a garbage-free abstract interpreter, extending abstract reference counting
with cycle detection for the continuation store only requires amortized O(1) additional
operations per continuation that is added to the continuation store.

Proof. We use the potential method for amortized analysis [55]. Assume a state ς̂ which is
garbage-free, i.e. R̂(ς̂) = Ŝ(ς̂). We define its potential Φ as the amount of references between
SCCs in the continuation store σ̂k (, i.e. Φ(ς̂) =

∑
ŝcck∈π̂kς̂

|φ̂ς̂(ŝcck)|. Cycle detection is
only triggered for the continuation store on a transition ς̂ →̂0++ ς̂ ′ where we insert a new
continuation κ̂ into the continuation store σ̂kς̂ (in the case of λANF, this only happens in
the transition rule E-Let). Since it is clear that Φ(ς̂) ≥ 0, we can formulate the amortized
cost ĉ of such an insertion as c+ (Φ(ς̂ ′)− Φ(ς̂)), where c is the actual cost of the insertion
(including cycle detection, whose cost is proportional to the traversal of the backward search).
If the address âkς̂′ is fresh (i.e. âkς̂′ 6∈ Ŝ(ς̂)), then the cycle detection requires no traversal,
hence ĉ = 1 + (Φ(ς̂ ′)−Φ(ς̂)). We have that Φ(ς̂ ′) = Φ(ς̂) + 1, since the insertion adds âkς̂′ to
the set φ̂(find(π̂, âkς̂)), which results in ĉ = 2. If the address âkς̂′ is reused (i.e. âkς̂′ ∈ Ŝ(ς̂)),
then cycle detection will perform a backward search starting from âkς̂′ . The key insight is
that every address l̂ traversed by search will lead to âkς̂ , hence we are guaranteed to have

a cycle. For every such l̂, we have that l̂
∗
 ̂ς̂ âkς̂′ due to the backward search, and also that

âkς̂
∗
 ̂ς̂ l̂ due to the garbage-free property of ς̂ (since l̂ ∈ Ŝ(ς̂) implies l̂ ∈ R̂(ς̂), hence it

must be that âkς̂
∗
 ̂ς̂ l̂). As a result, all references that are traversed will become part of the

same SCC, and therefore be removed from φ̂. Hence, if cycle detection traverses k references,
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we have that c = k + 1 (due to the traversal of k references) and Φ(ς̂ ′) = Φ(ς̂)− k (due to
the removal of k references), which results in ĉ = c+ (Φ(ς̂ ′)− Φ(ς̂)) = 1. In both cases, the
insertion only requires amortized O(1) operations. J

B Supplementary Definitions for (→̂arc++)

Figure 12 shows the updated auxiliary transition relation (→̂0++).

â = âlloc(x, ς̂) â′k = âllock(e1, ς̂) ρ̂′ = ρ̂[x 7→ â]
κ̂ = 〈â, e2, ρ̂

′, âk〉 〈φ̂′, π̂′〉 = extend(â′k, T̂K̂ont(κ̂), φ̂, π̂)

〈letx= e1 in e2, ρ̂, σ̂, σ̂k, âk, φ̂, π̂〉︸ ︷︷ ︸
ς̂

→̂0++ 〈e1, ρ̂, σ̂, σ̂k t [â′k 7→ κ̂], â′k, φ̂′, π̂′〉
(E-Let)

â = âlloc(x, ς̂) Â(f, ρ̂, σ̂) 3 〈λx.e′, ρ̂′〉
Â(ae, ρ̂, σ̂) = v̂ 〈φ̂′, π̂′〉 = extend(â, T̂P(Ĉlo)(v̂), φ̂, π̂)

〈f ae, ρ̂, σ̂, σ̂k, âk, φ̂, π̂〉︸ ︷︷ ︸
ς̂

→̂0++ 〈e′, ρ̂′[x 7→ â], σ̂ t [â 7→ v̂], σ̂k, âk, φ̂′, π̂′〉
(E-Call)

Â(ae, ρ̂, σ̂) = v̂ σ̂k(âk) 3 〈â, e′, ρ̂′, â′k〉
〈φ̂′, π̂′〉 = extend(â, T̂P(Ĉlo)(v̂), φ̂, π̂)

〈ae, ρ̂, σ̂, σ̂k, âk, φ̂, π̂〉 →̂0++ 〈e′, ρ̂′, σ̂ t [â 7→ v̂], σ̂k, â′k, φ̂′, π̂′〉
(E-Return)

Figure 12 Auxiliary transition relation using abstract reference counting with cycle detection.

The updated definition for ĉollect is given below. We slightly abuse notation for set
removal here: for a partitioning π̂, π̂ \ S really means (π̂ \ S) ∪

⋃
s∈S

⋃
e∈s{{e}}, while for a

store σ̂, σ̂ \ S means σ̂ \
⋃
s∈S s (and analogous for σ̂k).

ĉollect(ς̂ , ς̂ ′) = 〈eς̂′ , ρ̂ς̂′ , σ̂ς̂′ \ Ĝ, σ̂kς̂′ \ Ĝ, âkς̂′ , φ̂′, π̂ς̂′ \ Ĝ〉

where 〈φ̂′, Ĝ〉 = ĉheck*( Ĉ0 , ∅, φ̂ς̂′) Ĉ0 = {find(π̂ς̂′ , l̂) | l̂ ∈ T̂Σ̂(ς̂)}

ĉheck*(Ĉ, Ĝ, φ̂) =
{
〈φ̂, Ĝ〉 if Ĉ = ∅
ĉheck(ŝcc, Ĉ \ {ŝcc}, Ĝ, φ̂) otherwise, where ŝcc ∈ Ĉ

ĉheck(ŝcc, Ĉ, Ĝ, φ̂) =

d̂ealloc(ŝcc, Ĉ, Ĝ, φ̂) if |φ̂(ŝcc)| = 0 ∧ ŝcc 6∈ R̂

ĉheck*(Ĉ, Ĝ, φ̂) otherwise

where R̂ = {find(π̂ς̂′ , l̂) | l̂ ∈ T̂Σ̂(ς̂ ′)}

d̂ealloc(ŝcc, Ĉ, Ĝ, φ̂) = ĉheck*(Ĉ ∪ Ŝ, Ĝ ∪ {ŝcc}, φ̂	
⊔

ŝcc
′
∈Ŝ

[ŝcc′ 7→ ŝcc])

where Ŝ = {find(π̂ς̂′ , l̂′) | ∃l̂ ∈ ŝcc ∧ l̂  ̂ς̂′ l̂′ ∧ l̂′ /∈ ŝcc}
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C Supplementary Code Listings

The following code is used to generate Figure 1, and is taken from [1]. It is also used for the
collatz benchmark in Section 5.

1( define (div2* n s)
2(if (= (* 2 n) s)
3n
4(if (= (+ (* 2 n) 1) s)
5n
6(div2* (- n 1) s))))
7( define (div2 n)
8(div2* n n))
9( define ( hailstone * n count)
10(if (= n 1)
11count
12(if (even? n)
13( hailstone * (div2 n) (+ count 1))
14( hailstone * (+ (* 3 n) 1) (+ count 1)))))
15( define ( hailstone n)
16( hailstone * n 0))
17( hailstone 5)
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