
Mailbox Abstractions for Static Analysis of Actor
Programs
Quentin Stiévenart1, Jens Nicolay2, Wolfgang De Meuter3, and
Coen De Roover4

1 Software Languages Lab, Vrije Universiteit Brussel, Belgium
qstieven@vub.ac.be

2 Software Languages Lab, Vrije Universiteit Brussel, Belgium
jnicolay@vub.ac.be

3 Software Languages Lab, Vrije Universiteit Brussel, Belgium
wdmeuter@vub.ac.be

4 Software Languages Lab, Vrije Universiteit Brussel, Belgium
cderoove@vub.ac.be

Abstract
Properties such as the absence of errors or bounds on mailbox sizes are hard to deduce static-
ally for actor-based programs. This is because actor-based programs exhibit several sources of
unboundedness, in addition to the non-determinism that is inherent to the concurrent execution
of actors. We developed a static technique based on abstract interpretation to soundly reason
in a finite amount of time about the possible executions of an actor-based program. We use
our technique to statically verify the absence of errors in actor-based programs, and to compute
upper bounds on the actors’ mailboxes. Sound abstraction of these mailboxes is crucial to the
precision of any such technique. We provide several mailbox abstractions and categorize them
according to the extent to which they preserve message ordering and multiplicity of messages in a
mailbox. We formally prove the soundness of each mailbox abstraction, and empirically evaluate
their precision and performance trade-offs on a corpus of benchmark programs. The results show
that our technique can statically verify the absence of errors for more benchmark programs than
the state-of-the-art analysis.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages – Program Ana-
lysis

Keywords and phrases static analysis, abstraction, abstract interpretation, actors, mailbox

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.40

1 Introduction

Although most actor models disallow actors from sharing state, actor-based programs are
still difficult to reason about. For instance, reasoning about a message-level data race still
requires computing the execution interleavings of all involved actors. Static analyses to
reason about actor-based programs are therefore required. To terminate in finite time and
space, static program analyses need to account for several sources of unboundedness [26].
This is already challenging for higher-order programs, where the data domain is unbounded
and control-flow is intertwined with the flow of data [31]. Adding actors to higher-order
programs complicates matters further. Most actor models do not limit the number of actors
created at run-time nor the number of messages exchanged, and correct but non-terminating
actor programs are common. Due to the model’s inherent concurrency, there are myriads of
different executions possible for a given program with a given input.

© Quentin Stiévenart, Jens Nicolay, Wolfgang De Meuter, Coen De Roover;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 40; pp. 40:1–40:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.40
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Mailbox Abstractions for Static Analysis of Actor Programs

To enable defect detection and other tool support, we present a static analysis that
computes a sound over-approximation of the runtime behavior of a given actor-based higher-
order program. If this over-approximation does not exhibit the sought-after defect, neither
does the program for any possible input and any possible actor execution interleaving (i.e.,
the over-approximation is sound). A defect found in the over-approximation might, however,
not have any counterpart in the runtime behavior of the program (i.e., the defect is a false
positive). Such false positives often stem from the use of imprecise abstractions.

Static analyses for actor-based higher-order programs are few and far between. We
argue that existing analyses use mailbox abstractions that undermine their precision. Before
introducing our approach (Section 1.3), we discuss two important problems of existing work
that hamper their use as the foundation for proper tool support.

1.1 Problem #1: Missing interleavings for ordered-message mailbox
models

Most actor models schedule actors non-deterministically for execution at any given moment.
This renders reasoning about an actor program by enumerating all possible execution
interleavings computationally expensive.

Actor models are said to satisfy the isolated turn principle [13] or to feature macro-step
semantics [2] if actors are precluded from sharing state and feature message reception as
the only blocking operation. If this is the case, it is possible to treat message processing in
isolation for every message and every actor. A macro step is a sequence of small operational
steps, involving a single actor, from the reception of a message until the completion of
the work associated with that message. Agha et al. [2] prove that, for actor models with
unordered mailboxes, any small-step interleaving has a semantically equivalent macro-step
interleaving. As a result, static analyses only need to account for the interleavings of macro
steps rather than the interleavings of all small steps.

Macro-step semantics has been used in prior work to reduce the number of interleavings
to verify actor programs [36, 28]. The situation, however, is different for actor models in
which mailboxes do preserve the ordering of their messages. Examples of such actor models
include the original actor model [1], and implementations such as Erlang [3] and Akka [24].

Listing 1 Example program motivating the need for static analyses to revisit macro-stepping for
actor models with ordered-message mailboxes.

1 (define beh1
2 (actor ()
3 (m1 () (become beh1))
4 (m2 () (become beh1))
5 (m3 () (become beh1))))
6 (define beh2
7 (actor (target)
8 (start ()
9 (send target m1)

10 (send target m2)
11 (become beh2 target))))
12 (define t (create beh1))
13 (define a (create beh2 t))
14 (send a start)
15 (send t m3)

To illustrate how the order of message sends is impacted by macro-step semantics, consider

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:3

Listing 1. In this example, two actors are defined by specifying their initial behavior (lines
2 and 7). The first actor (line 2) with behavior beh1 takes no parameters, and handles
three different messages (lines 3–5). After processing a message, an actor becomes a new
behavior. The second actor (line 7) with behavior beh2 takes one parameter, target, and
upon receiving message start (line 8) sends two messages to this target (lines 9 and 10). The
main process then creates actor t (line 12) with behavior beh1, and actor a with behavior
beh2 (line 13), specifying actor t as its target. The process then sends message start to
actor a (line 14), followed by message m3 to actor t.

For a static analysis to be sound for an actor model in which mailboxes preserve the
ordering of their messages, it should account for actor t to receive messages in its mailbox in
any of the following orders:

m1, m2, m3: actor a sends its messages, after which the main process is scheduled for
execution,
m3, m1, m2: the main process sends its message, after which it is followed by actor a,
m1, m3, m2: actor a sends a first message, the main process is scheduled, after which actor
a sends its second message.

The same analysis sped up through macro-stepping will, however, no longer include the
third interleaving in its over-approximation of the program’s runtime behavior. This is
because the analysis will not interleave the main process with actor a’s processing of the
start message. According to the analysis, actor a will always send both m1 and m2 without
interruptions. Analyses sped up through macro-stepping are therefore unsound for actor
models in which mailboxes preserve message ordering.

To render the analysis sound again, we therefore propose to speed it up through a finer-
grained variant of macro-stepping that we call ordered macro-stepping. During an ordered
macro step, the analysis allows each actor to receive a message and to send a single message.
The ordered macro step ends right before a second message is sent, as message sends can
introduce other interleavings to be considered by the analysis. Two ordered macro steps
(instead of one regular macro step) are therefore required to analyze actor a’s processing of
the start message. The first one ends before actor a sends the second message, allowing
the main actor to send its message before a sends message m2. The difference with regular
macro-stepping is small, but ensures that analyses account for interleavings at message sends
as well.

This example illustrates that regular macro-stepping, while useful to speed up static
analysis, needs to be adapted for actor models with ordered-message mailboxes. Otherwise,
important message interleavings might be discarded rendering the analysis unsound. For
unordered-message mailboxes, regular macro-stepping suffices because messages can be
reordered arbitrarily in the mailbox.

1.2 Problem #2: Loss of message ordering and multiplicity
To ensure termination in a finite amount of time and space, static analyses need to abstract
every potentially unbounded program component. For actor-based programs this includes
the actors’ mailboxes. Static analyses can avoid abstracting mailboxes if the program’s
actor model explicitly constrains mailbox size or if mailbox bounds can be computed for the
actor program ahead-of-time. However, only 2 out of the 11 actor models surveyed in De
Koster et al. [14] allow explicit bounds on mailboxes, and computing mailbox bounds for
any actor-based program is undecidable in general. Mailbox abstractions have to be chosen
carefully, as illustrated by the following example.

ECOOP 2017

40:4 Mailbox Abstractions for Static Analysis of Actor Programs

Consider Listing 2, adapted from Agha [1]. This program uses an actor with behavior
stack-node to represent a stack. When receiving the push message with a value v to be
stored on the stack (line 3), the actor creates a closure capable of restoring its current state,
i.e., the values of content and link. The actor then sets content to the pushed value and
link to the closure. When receiving a pop message (line 6), the value of content is sent to
the provided target actor customer, and the link closure is called to restore the previous
state. Should the stack be empty upon a pop (i.e., link is #f), a stack underflow error is
raised (line 12). The main process pushes a value obtained from the user on a stack act (line
16), pops one value from this stack (line 17), which will send it (line 9) to a display actor
(omitted from the example, passed along on line 17) that will print the value received.

Listing 2 Example actor-based stack implementation adapted from Agha [1].
1 (define stack-node
2 (actor (content link)
3 (push (v)
4 (become stack-node v
5 (lambda () (become stack-node content link))))
6 (pop (customer)
7 (if link
8 (begin
9 (send customer message content)

10 (link))
11 (begin
12 (error "stack␣underflow")
13 (terminate))))))
14 (define display (create display-actor))
15 (define act (create stack-node #f #f))
16 (send act push (read-int))
17 (send act pop display)

Although the program in Listing 2 contains an error statement on line 12, this error is not
reachable in any execution of the program under any input nor under any interleaving. Some
related work, such as D’Osualdo et al. [17], abstracts mailboxes as powersets. Lines 16–17
then result in a mailbox that is abstracted as the set {push, pop}. To preserve soundness,
analyses need to extract messages from this mailbox non-deterministically. This is because
there is no information about the multiplicity of the messages in the mailbox. Analyses
therefore compute not one, but two mailboxes as the result of retrieving push from this
mailbox: {pop} and {push, pop}. Retrieving the next message from the mailbox {pop} again
yields two mailboxes: ∅ and {pop}. Through the former case, the analysis accounts for pop
being present but once and deems the stack underflow error unreachable as a result. Through
the latter case, the analysis accounts for pop being present more than once. It now deems
the stack underflow error reachable as the stack may be empty when a subsequent pop is
processed. This false positive results from a loss of precision due to the use of a powerset
abstraction for the actor’s mailbox.

Other related work, such as Agha et al. [2] and Garoche et al. [22], relies on a multiset
definition of mailboxes. Multisets are sets that preserve multiplicity but, like powersets, are
unordered. However, a mailbox abstraction that preserves multiplicity does not suffice either
to analyze this program precisely. At the point where the stack actor has received the push
message followed by the pop message, the analysis has computed its mailbox abstraction to
the multiset [push 7→ 1, pop 7→ 1]. This multiset encodes the information that a both a push
message and a pop messages are present once in the mailbox. Again, the analysis needs to

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:5

extract the next message to process non-deterministically, giving rise to two possible successor
mailboxes [pop 7→ 1] and [push 7→ 1]. The former multiset represents the mailbox of the
stack actor after it has processed message push. In contrast to the set abstraction, retrieving
the next message from this mailbox gives rise to a single mailbox [], because pop is present
only once, and no stack underflow error can be reached through (spurious) subsequent pop
messages. However, because ordering information is not preserved, pop might be processed
before its corresponding push, the analysis still deems the stack underflow error reachable
under a multiset abstraction for the actor’s mailbox.

This example motivates the importance of mailbox abstractions that satisfy ordering and
multiplicity: without one or the other, the analysis cannot automatically prove the program
in Listing 2 free of errors.

1.3 Our approach

We argue that precise analysis of actor-based programs requires a proper mailbox abstraction.
For actor models with ordered-message mailboxes (e.g., [1, 25, 24, 3]), this abstraction needs
to preserve ordering and multiplicity of its messages (Section 1.2). In addition, those actor
models require the analysis to interleave message sending using ordered macro-stepping for
it to be sound (Section 1.1). For the others (e.g., [2, 22]), ordered macro-stepping is still
sound but regular macro-stepping suffices. We therefore do not present one analysis, but a
framework capable of analyzing programs from different actor models that features ordered
macro-stepping and takes a mailbox abstraction as parameter.

Our framework approaches the problem of statically analyzing actor-based programs
through abstract interpretation [10]. We start by defining a simple actor language, λα,
which is an extension of the λ-calculus (Section 2). We express the concrete semantics for
λα as an abstract machine (Section 3). The result of executing an input program under
these semantics is a flow graph that represents the program’s runtime behavior and enables
verifying behavioral properties. In this work we focus on verifying the absence of runtime
errors and mailbox bounds. Because the computed flow graph can be infinite under concrete
semantics, we apply a systematic abstraction, resulting in an abstract semantics for λα
(Section 4). We leave the mailbox abstraction as a parameter of the abstract semantics,
and present multiple instantiations of mailbox abstractions together with their properties,
categorized into four categories (Section 5). We evaluate each of these mailbox abstractions
on a set of benchmark programs with respect to performance and precision (Section 6), and
compare our results with those obtained by Soter, a state-of-the-art tool for analyzing Erlang
programs [17]. We conclude with a discussion of related work and the limitations of our
approach (Section 7).

Our work makes the following contributions:
We present the concrete and an abstracted formal semantics of an actor-based higher-order
programming language. The abstracted semantics computes a sound over-approximation
of a given program’s runtime behavior. To reduce non-determinism and hence speed up
computation, the abstracted semantics is the first to incorporate a finer-grained variant
of macro-stepping, called ordered macro-stepping. We show that regular macro-stepping
is not sound when analyzing actor programs from ordered-message mailbox models.
We leave the abstraction for the actors’ mailboxes as a parameter to the abstracted
semantics. We categorize possible mailbox abstractions according to the extent to
which they preserve message ordering, and to the extent to which they preserve message
multiplicity. We formally prove the soundness of each mailbox abstraction, and empirically

ECOOP 2017

40:6 Mailbox Abstractions for Static Analysis of Actor Programs

evaluate their impact on the precision and running time of the analysis on a corpus of
benchmark programs.
We demonstrate how to use the sound over-approximation computed by our analysis to
formally verify mailbox bounds and the absence of runtime errors. An evaluation shows
that our technique is more precise than a state-of-the-art tool. The higher precision of
our mailbox abstractions enables verifying these properties on 12 benchmark programs,
of which 6 cannot be verified by the tool we compare with.

2 A Simple Actor Language: λα

Figure 1 defines the syntax of a minimalistic higher-order programming language based on
the λ-calculus in A-Normal Form [19]. It supports actors through the following constructs:

actor defines an actor behavior, associating each type of the messages the behavior can
receive with a corresponding message processing body,
create spawns a new actor from a given behavior and returns its process identifier,
send sends a message to a specific actor identified by its process identifier,
become changes the behavior of the current actor, and
terminate ends the execution of the current actor.

Note that messages exchanged between actors consist of a tag t (a simple name) and an
arbitrary number of arguments. Because tags are syntactic elements, like variable names,
they are finite within a program. To facilitate benchmarking, the implementation used in
our evaluation (Section 6.1) extends this language with additional features such as support
for if-expressions. We refer to Listing 1 and 2 from the introduction for example programs
in this language.

e ∈ Exp ::= ae | (ae ae∗)
| (letrec ((x e)∗) e)

| (error)

| (create ae ae∗)
| (send ae t ae∗)
| (become ae ae∗)
| (terminate)

ae ∈ AExp ::= x | lam | act
lam ∈ Lam ::= (λ (x∗) e)

act ∈ Act ::= (actor (x∗)

(t (y∗) e)∗)

x, y ∈ Var a finite set of variable names
t ∈ Tag a finite set of tags

Figure 1 Grammar of the minimalistic higher-order λα language supporting concurrent actors.

We assume the following about the concrete semantics of λα programs.
1. Mailboxes work in a FIFO fashion: received messages are sent to the back of the actor’s

mailbox, and the actor can only process the message at the front of its mailbox. Although
the most widely used actor models differ here, the majority of models uses FIFO mailboxes:
6 of the 11 models reviewed in De Koster et al. [14] have FIFO mailboxes.

2. Messages are received in the same order as sent, and no message is lost during transmission.
Modeling a real-world situation with messages being possibly lost or reordered would
increase the complexity of the model without adding to the discussion.

3. No side effects can occur within the body of an actor. This is enforced by the language,
as it does not include assignment constructs (e.g., set!). Many actor languages are free
of side effects by definition, or contain only limited side effects. Such side effects lead to
possible data races and are better avoided [7].

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:7

3 Concrete Semantics of λα as an Abstract Machine

3.1 State Space

We define the concrete semantics of λα as an abstract machine in Figure 2. This enables its
abstraction using a systematic approach [38]. Each state’s mapping of process identifiers to
evaluation contexts is testament to its concurrency support. A process’ evaluation context
ctx can be waiting for a message (wait), can be stuck due to a programmer error (error), or
can be processing a message (ev when an expression is evaluated in a given environment,
and ko when a value is reached). It is always linked to a current actor behavior a, with the
special case that the initial process is linked to the main behavior. Other actors have an
instantiated behavior (acti), consisting of an actor expression and an extended environment.
Its final component is a mailbox represented as a sequence of messages, where each message
is composed of a tag (see Figure 1) and a list of values. The only values in λα are regular
closures (clo) which combine a lambda expression with a definition environment, actor
closures (actd) which combine an actor definition with a definition environment, and process
identifiers (pid).

We use a value store σ to store values produced by the program. The machine’s
continuations κ are threaded through a separate continuation store Ξ. Separating the
addresses at which values and continuations are allocated will render the abstract semantics
more precise. Both stores are shared by all processes. This not to model shared-memory
concurrency, but to enable an important optimization called global store widening [38],
discussed in Section 6.1. Process identifiers, value addresses and continuation addresses are
parameters of the semantics. We give instantiations of these parameters in Section 3.3.

ς ∈ Σ = Procs × Store ×KStore
π ∈ Procs = Pid ⇀ Context

ctx ∈ Context = (Control ×Kont
×Actor ×Mbox)

c ∈ Control ::= ev(e, ρ) | ko(v)
| wait | error

v ∈ Val ::= clo(lam, ρ)
| actd(act, ρ)
| pid(p)

m ∈ Message = Tag ×Val∗

a ∈ Actor ::= acti(act, ρ)
| main

φ ∈ Frame ::= letk(a, e, ρ)
κ ∈ Kont = Frame ×KAddr + {ε}
ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr ⇀ Val

Ξ ∈ KStore = KAddr ⇀ Kont
mb ∈ Mbox = Message∗

addr ∈ Addr , kaddr ∈ KAddr
p ∈ Pid

Figure 2 State space of the concrete abstract machine for λα.

3.2 Atomic Expressions

Atomic expressions AExp are expressions that the machine reduces to a value in a single
step without having to allocate addresses or having to modify the store. They are evaluated
through A : AExp × Env × Store → Val. Its definition is as usual, with the addition that
actor definitions are wrapped with their definition environment, similarly to closures.

A(x, ρ, σ) = σ(ρ(x)) A(lam, ρ,_) = clo(lam, ρ) A(act, ρ,_) = actd(act, ρ)

ECOOP 2017

40:8 Mailbox Abstractions for Static Analysis of Actor Programs

3.3 Addresses, Process Identifiers and Allocation
Value addresses, continuation addresses and process identifiers are parameters of the semantics.
They are produced by the allocation functions alloc : Var × Σ→ Addr , kalloc : Exp × Σ→
KAddr and palloc : Exp × Σ → Pid respectively. For λα’s concrete abstract machine, an
example instantiation is as follows.

Addr = Var × N
KAddr = N

Pid = N

alloc(x, 〈_, σ,_〉) = (x, |Dom(σ)|+ 1)
kalloc(e, 〈_,_,Ξ〉) = |Dom(Ξ)|+ 1
palloc(e, 〈π,_,_〉) = |Dom(π)|+ 1

3.4 Concrete Mailboxes
The following parameters to the abstract machine complete Figure 2’s definition of mailboxes.

empty ∈ Mbox is a special element representing the empty mailbox.
enq : (Message ×Mbox)→ Mbox enqueues a message at the back of a mailbox.
deq : Mbox → P(Message ×Mbox) dequeues a message from the front of the mailbox,
resulting in the message and the new mailbox. Using a powerset as range will facilitate
incorporating non-determinism in the abstract semantics. The result of dequeuing from
the empty mailbox is the empty set.
size : Mbox → N computes the size of a mailbox.

The concrete representation of a mailbox is a sequence of messages, with the following
definitions (where :: both denotes prepending a sequence with an element, and appending an
element at the end of a sequence).

empty = ε

enq(m,mb) = mb :: m
deq(ε) = {}

deq(m :: mb) = {(m,mb)}
size(ε) = 0

size(m :: mb) = size(mb) + 1

3.5 Transition Relation
The small-step transition relation (7→) : Pid×Effect×Σ×Σ defines the small-step semantics
of the λα language, in Figure 3. We write ς p7−→

E
ς ′ as a shorthand for (p,E, ς, ς ′) ∈ (7→),

meaning that from state ς, a small step on actor p can be performed to reach state ς ′, and this
generates effect E. This transition relation is therefore annotated with the process identifier
p of the actor that performs a transition, and with an effect E used by the macro-step
transition relation.

The possible effects correspond to the actions that actors can perform: creating a new
actor (Create), sending a message (Send), receiving a message (Receive), changing the actor’s
behavior (Become), or terminating the actor (Terminate). The NoEffect effect denotes the
absence of effect on a transition. We shorten ς p7−−−−−→

NoEffect
ς ′ to ς p7−→ ς ′.

E ∈ Effect ::= Create | Send | Receive | Become | Terminate | NoEffect

Rules for transitions that do not affect other actors or the current actor’s behavior or
mailbox are called sequential rules. We only formalize the sequential rule for the error
statement as an example. Other sequential rules follow the same structure. The non-sequential
rules are related to how actors interact with each other and their mailbox.

T-Err: evaluating an error statement yields an error state.

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:9

π(p) = 〈ev((error), ρ), κ, a,mb〉
〈π, σ,Ξ〉 p7−→ 〈π[p 7→ 〈error, κ, a,mb〉], σ,Ξ〉

T-Error

π(p) = 〈ev((create æa æ1 . . .æn), ρ), κ, a,mb〉
p′ = palloc(æa, 〈π, σ,Ξ〉) actd(act, ρa) = A(æa, ρ, σ)

(actor (x1 . . . xn) . . .) = act addr i = alloc(xi, 〈π, σ,Ξ〉)
vi = A(æi, ρ, σ) ρ′a = ρa[xi 7→ addr i] a′ = acti(act, ρ′a)

〈π, σ,Ξ〉 p7−−−−→
Create

〈π[p 7→ 〈ko(pid(p′)), κ, a,mb〉,

p′ 7→ 〈wait, ε, a′, empty〉],
σ[addr i 7→ vi],Ξ〉

T-Create

π(p) = 〈ev((become æa æ1 . . .æn), ρ), κ, a,mb〉
actd(act, ρa) = A(æa, ρ, σ)

(actor (x1 . . . xn) . . .) = act addr i = alloc(xi, 〈π, σ,Ξ〉)
vi = A(æi, ρ, σ) ρ′a = ρa[xi 7→ addr i] a′ = acti(act, ρ′a)

〈π, σ,Ξ〉 p7−−−−−→
Become

〈π[p 7→ 〈ko(actd(act, ρa)), κ, a′,mb〉], σ[addr i 7→ vi],Ξ〉
T-Become

π(p) = 〈wait, ε, a,mb〉 ((t, v1 . . . vn),mb′) ∈ deq(mb)
acti((actor (x1 . . . xn) . . . (t (y1 . . . yn) e) . . .), ρb) = a

addr i = alloc(yi, 〈π, σ,Ξ〉) ρ′b = ρb[yi 7→ addr i]
〈π, σ,Ξ〉 p7−−−−−→

Receive
〈π[p 7→ 〈ev(e, ρ′b), ε, a,mb′〉],

σ[addr i 7→ vi],Ξ〉

T-Receive

π(p) = 〈ko(v), ε, a,mb〉
〈π, σ,Ξ〉 p7−→ 〈π[p 7→ 〈wait, ε, a,mb〉], σ,Ξ〉

T-Wait

π(ps) = 〈ev((send æ0 t æ1 . . . aen), ρ), κs, as,mbs〉 pid(pr) = A(æ0, ρ, σ)
π(pr) = 〈c, κr, ar,mbr〉 pr 6= ps vi = A(æi, ρ, σ) m = (t, v1 . . . vn)

〈π, σ,Ξ〉 ps7−−−→
Send

〈π[ps 7→ 〈ko(pid(pr)), κs, as,mbs〉,

pr 7→ 〈c, κr, ar, enq(m,mbr)〉],
σ,Ξ〉

T-Send

π(p) = 〈ev((send æ0 t æ1 . . . aen), ρ), κ, a,mb〉
pid(p) = A(æ0, ρ, σ) vi = A(æi, ρ, σ) m = (t, v1 . . . vn)
〈π, σ,Ξ〉 p7−−−→

Send
〈π[p 7→ 〈ko(pid(p)), κ, a, enq(m,mb)〉], σ,Ξ〉

T-Send-Self

π(p) = 〈ev((terminate), ρ),_,_,_〉
〈π, σ,Ξ〉 p7−−−−−−−→

Terminate
〈π − p, σ,Ξ〉

T-Terminate

Figure 3 Concrete transition relation for λα programs.

ECOOP 2017

40:10 Mailbox Abstractions for Static Analysis of Actor Programs

T-Create: create spawns a new actor with the given behavior (actd), where constructor
parameters are bound to the given arguments to create an actor instantiation (acti). The
newly created actor starts in a wait status, and with an empty continuation and mailbox.
T-Become: become changes an actor’s behavior by updating its current behavior and
binding its constructor parameters to the given arguments. The return value of become
is the new behavior.
T-Receive: when an actor is waiting, it can dequeue a message from the front of its
mailbox and process it, by evaluating the corresponding message processing body of its
current behavior in an extended environment.
T-Wait: an actor with an empty continuation has computed a value and has therefore
completed the processing of a message. It then goes back to waiting for new messages.
T-Send and T-Send-Self: when an actor sends a message, two different rules may
apply: one for an actor sending a message to a different actor, the other for an actor
sending a message to itself. To send a message from a sender actor to a different receiver
actor (T-Send), the receiver actor and the message arguments have to be evaluated. The
message is then enqueued on the receiver actor’s mailbox. Self-sends are handled by a
different rule (T-Send-Self) to avoid incorrect updates to the process map.
T-Terminate terminate removes the actor from the process map. Here, π − p denotes
the removal of the element of which the key is p.

3.6 Macro-Stepping Semantics
As motivated in Section 1.1, we speed up our analysis through a variant of regular macro-
stepping [2] that we call ordered macro-stepping. We now formalize a general macro-stepping
semantics from which either can be instantiated.

The transition relation (p7−→
E

) performs a small step in the evaluation of a program. A
macro step is a sequence of small steps of which the first can produce any effect, and the
remaining steps are constrained to a restricted set of effects. The particular restriction
determines whether the macro step is ordered. We first define a restricted multi-stepping
transition relation (7−→∗↓) ⊆ (Pid × P(Effect)× P(Effect)× Σ× Σ). It performs multiple
small steps of the transition relation on a single actor until it reaches a transition producing
an effect that is disallowed. This multi-stepping transition relation is defined in Figure 4,
where set X denotes effects that are never allowed and function f : Effect → P(Effect)
defines which effects are no longer allowed once a given effect has been produced.

M-Main: a small step producing an allowed effect can be performed, followed by a
restricted multi-step with the set of disallowed effects augmented by the result of f on
the produced effect.
M-Stop: only a single small step can be performed, because the next small step would
produce an effect that is disallowed.
M-Blocked: only a single small step can be performed, because no further small steps
can be performed from the resulting state on the same process (i.e., the process is blocked).

The macro-stepping transition relation (7−→M) ⊆ (Pid ×P(Effect)×Σ×Σ), also defined
in Figure 4, first makes a single unrestricted small step followed by a restricted multi-step.
Using f(E) = {Receive} gives rise to the unordered macro-stepping semantics of Agha et
al. [2]. Its restriction disallows receiving messages after the first small step of a macro
step. Our ordered macro-stepping semantics follows from f(Send) = {Receive,Send}, and
f(E) = {Receive} otherwise. This restriction disallows actors from sending more than one

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:11

ς1
p7−→
E
ς2 ς2

p7−−→
Es

∗↓
X∪f(E) ςN

E 6∈ X

ς1
p7−−−−−→

Es∪{E}

∗↓
X
ςN

M-Main

ς1
p7−−→
E1

ς2 ς2
p7−−→
E2

ς3

E1 6∈ X E2 ∈ X

ς1
p7−−−→
{E1}

∗↓
X
ς2

M-Stop

ς1
p7−−→
E1

ς2 6 ∃ς3, ς2
p7−−→
E2

ς3

E1 6∈ X

ς1
p7−−→
E1

∗↓
X
ς2

M-Blocked

ς1
p7−−−−−→

Es∪{E}

M
ςN ⇐⇒ ς1

p7−→
E
ς2 ∧ ς2

p7−−→
Es

∗↓
f(E) ςN

Figure 4 Concrete macro-stepping transition relation.

message. Sending more results in another macro-step. As in the unordered macro-stepping
semantics, message can only be received during the first small step of an ordered macro step.

3.7 Collecting Macro-Stepping Semantics

The collecting semantics of a λα program e under macro-stepping can be computed as
the fixpoint of the function Fe : P(Σ) → P(Σ). The collecting semantics lfp(Fe) is a set
containing every reachable state in the evaluation of program e under any possible interleaving.
The granularity of interleavings is defined by the macro-stepping semantics, in particular by
the restricting function f . As explained in Section 1.1, the use of macro-stepping semantics
instead of interleaving semantics has the benefit of reducing the number of interleavings
to consider when analyzing a program. Evaluation starts at an initial state given by the
injection function I : Exp → Σ.

Fe(S) = {I(e)} ∪

ς ′ | 〈π,_,_〉︸ ︷︷ ︸
ς

∈ S ∧ p ∈ Dom(π) ∧ ς p7−→
Es

M
ς ′

I(e) = 〈[main 7→ 〈ev(e, []), empty,main〉], [], []〉

3.8 Program Properties

Useful properties of actor-based programs can be inferred from the collecting semantics.
We demonstrate this for reachability of error states and for bounds on actor mailboxes.
Examples of other properties include the possible values of a variable, the messages and
message arguments that an actor can receive during its lifetime, or the behaviors that an
actor actually assumes. Because reachability within the collecting semantics is not decidable,
we resort to abstraction in order to automatically verify these properties (Section 4.7).

Reachability of error states Predicate ErrorReachablee holds when an error is reachable
in program e.

ErrorReachablee ⇐⇒ ∃〈π,_,_〉 ∈ lfp(Fe), p ∈ Dom(π) | π(p) = 〈error,_,_,_〉

ECOOP 2017

40:12 Mailbox Abstractions for Static Analysis of Actor Programs

Mailbox bounds Function MailboxBounde(p) computes the maximal number of messages
an actor with process identifier p can have in its mailbox when executing program e.

MailboxBounde(p) = max ({size(mb) | 〈π,_,_〉 ∈ lfp(Fe) ∧ π(p) = 〈_,_,_,mb〉})

4 Abstract Interpretation of λα

The semantics of λα can be abstracted systematically in a sound manner using the abstracting
abstract machines approach of Van Horn and Might [38], through the abstraction function α
given in the accompanying technical report1.

4.1 Abstract State Space
The state space resulting from systematic abstraction is given in Figure 5. Abstract com-
ponents that are the counterpart of a concrete component are denoted by a hat (X̂). The
abstraction of addresses and process identifiers is a parameter of the analysis. We also leave
the abstraction of the mailbox a parameter of the analysis, of which we discuss possible
instantiations in Section 5. Systematic abstraction has made process map, value store
and continuation store to map elements of their domain to sets of contexts, values and
continuations. This change in ranges stems from the abstract semantics having to compute
a sound over-approximation with but a finite amount of addresses and process identifiers.
Messages are now composed of a tag and a sequence of sets of abstract values. Section 4.4
motivates this change by reduced non-determinism.

ς̂ ∈ Σ̂ = P̂rocs × Ŝtore × K̂Store

π̂ ∈ P̂rocs = P̂id ⇀ P(Context)

ĉtx ∈ Ĉontext = (Ĉontrol × K̂ont

× Âctor × M̂box)

ĉ ∈ Ĉontrol ::= ev(e, ρ̂) | ko(v̂)
| wait | error

v̂ ∈ V̂al ::= clo(lam, ρ̂)
| actd(act, ρ̂)
| pid(p̂)

m̂ ∈ M̂essage = Tag × P(V̂al)∗

â ∈ Âctor ::= acti(act, ρ̂) | main

φ̂ ∈ F̂rame ::= letk(âddr , e, ρ̂)

κ̂ ∈ K̂ont = F̂rame × K̂Addr + {ε}

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂al)

Ξ̂ ∈ K̂Store = K̂Addr ⇀ P(K̂ont)

m̂b ∈ M̂box

âddr ∈ Âddr , k̂addr ∈ K̂Addr

p̂ ∈ P̂id

Figure 5 State space of the abstracted abstract machine for λα.

4.2 Abstract Atomic Expressions
Abstract evaluation of atomic expressions might yield more than one abstract value, as the
value store now maps addresses to sets of abstract values because a single abstract address
can correspond to multiple concrete ones. We therefore obtain the following definition of

1 https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf

https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:13

Â : AExp × Ênv × Ŝtore → P(Val)

Â(x, ρ, σ) = σ(ρ(x)) A(lam, ρ,_) = {clo(lam, ρ̂)} A(act, ρ,_) = {actd(act, ρ̂)}

4.3 Abstract Addresses, Process Identifiers and Allocation
Functions âl loc : Var × Σ̂→ Âddr , k̂alloc : Exp × Σ̂→ K̂Addr , and p̂alloc : Exp × Σ̂→ P̂id
determine the allocation of value addresses, continuation addresses and process identifiers
respectively. The instantiation of these parameters to the analysis influences precision,
but not soundness, as the AAM technique has been proven sound under any allocation
strategy [32, 23]. The following instantiation results in a flow-sensitive, context-insensitive
0-CFA analysis.

Âddr = Var

K̂Addr = Exp

P̂id = Exp

âlloc(x, ς̂) = x

k̂alloc(e, ς̂) = e

p̂alloc(e, ς̂) = e

4.4 Abstract Transition Relation
The abstract transition rules, depicted in Figure 6, act on components of the abstract
state space. We highlight the differences with the concrete rules, which arise due to sound
over-approximation.

The process map π̂ now maps each process identifier to a set of processes. Hence the
premise π(p) = . . . becomes π̂(p̂) 3 . . ., at the cost of non-determinism when one abstract
process identifier is mapped to more than one abstract process.
For the same reason, and because the store now maps each abstract address to a set
of values, process map updates and store updates become join operations: π[p 7→ . . .]
becomes π̂ t [p̂ 7→ {. . .}]. Introducing abstract counting [33, 34] enables to perform strong
updates on the store and process map when an abstract address or an abstract process
identifier is mapped to a single element.
In rules AbsT-Create, AbsT-Become, AbsT-Send and AbsT-Send-Self, the con-
crete vi = A(. . .) become V̂i = Â(. . .), where V̂i ∈ P(V̂al), instead of v̂i ∈ Â(. . .). This
is because the result of the atomic evaluation will eventually be added to the store,
which now maps to sets of values. Not having to fire rules for individual set elements,
non-determinism is reduced.
For the same reason, we directly store sets of values in messages in rules AbsT-Send
and AbsT-Send-Self.
In the rule AbsT-Terminate, it is not sound to remove the context of the terminating
actor from the process map. This is because an abstract actor may correspond to more
than one concrete actor, in which case only one of the concrete actors would terminate.
Removing the abstract actor would in effect terminate all the concrete actors it corresponds
to. This is problematic in terms of precision, but is remedied by our introduction of
abstract counting [33] on the process map.
The condition pr 6= ps disappears from the rule AbsT-Send. Due to abstraction, a single
abstract process identifier may correspond to more than one concrete process identifier.
When a message is sent from a process with identifier p̂, then either the target has a
different process identifier and only AbsT-Send applies; or the target has the same
process identifier. In the second case, the message may be sent to the same process or a
different process, and both AbsT-Send and AbsT-Send-Self may apply. Requiring

ECOOP 2017

40:14 Mailbox Abstractions for Static Analysis of Actor Programs

p̂r 6= p̂s would incorrectly ignore the case in which an actor sends a message to a different
one with the same abstract process identifier. With abstract counting, the condition can
be restored when both p̂r and p̂s each correspond to a single process identifier.

4.5 Abstract Macro-Stepping Semantics
The formalization of macro-stepping for the abstract semantics remains the same: a single
abstract small step is performed, followed by a number of effect-restricted abstract small steps.
We obtain an abstract macro-stepping transition relation (̂7−→M) ⊆ (P̂id×P(Effect)×Σ̂×Σ̂).
Its soundness follows from the soundness of the abstract small-step transition relation, and
is proven in Section 6.6.

4.6 Abstract Collecting Macro-Step Semantics
The abstract collecting semantics of a λα program e is the fixpoint of F̂e : P(Σ̂)→ P(Σ̂).

F̂e(Ŝ) =
{
Î(e)

}
∪

ς̂ ′ | 〈π̂,_,_〉︸ ︷︷ ︸
ς̂

∈ Ŝ ∧ p̂ ∈ Dom(π̂) ∧ ς̂
̂̂p7−→
Es

M

ς̂ ′

Î(e) = 〈[main 7→

{
〈ev(e, []), êmpty,main〉

}
], [], []〉

The abstract collecting semantics lfp(F̂e) is therefore a set of abstract states that over-
approximates the set of states reachable in all concrete execution of program e. If the
abstractions used yield a finite state space, reachability within the abstract collecting
semantics becomes decidable. This is the case if the number of addresses, process identifiers
and mailboxes are bounded. The 0-CFA formulation of addresses and process identifiers
described in Section 4.3 is bounded, as well as the bounded mailbox abstractions described
in Section 5.

4.7 Abstract Program Properties
Our analysis computes a sound over-approximation of the program’s behavior. More precisely,
its abstract collecting semantics is a set of abstract program states that at least represent
every reachable concrete program state. However, the computed set may also contain spurious
abstract states that correspond to concrete program states that are not found in the concrete
collecting semantics. This impacts the abstract program properties in several ways.

Reachability of abstract error states Predicate ̂ErrorReachablee may report error states
that are never reachable in program e, due to spurious program states. However, every
reachable error state is reported. If the analysis reports nothing, the program e contains no
reachable error states. It can therefore be used to prove the absence of errors in a program.

̂ErrorReachablee ⇐⇒ ∃〈π̂,_,_〉 ∈ lfp(F̂e), p̂ ∈ Dom(π̂) | π̂(p̂) 3 〈error,_,_,_〉

Abstract mailbox bounds Function ̂MailboxBounde(p) computes an upper-bound on the
number of messages in the mailbox of actor p. Because it is an upper-bound, actor p may
never reach this bound. However, the mailbox of process p will never exceed this bound,
because the analysis is sound. Depending on the precision of the mailbox abstraction, ŝize
might yield ∞, although the size of the mailbox might be bounded in all concrete executions.

̂MailboxBounde(p) = max
({

ŝize(m̂b) | 〈π̂,_,_〉 ∈ lfp(F̂e) ∧ π̂(α(p)) 3 〈_,_,_, m̂b〉
})

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:15

π̂(p̂) 3 〈ev((error), ρ̂), κ̂, â, m̂b〉

〈π̂, σ̂, Ξ̂〉
̂̂p7−→〈π̂ t [p̂ 7→

{
〈error, κ̂, â, m̂b〉

}
], σ̂, Ξ̂〉

AbsT-Error

π̂(p̂) 3 〈ev((create æa æ1 . . .æn), ρ̂), κ̂, â, m̂b〉
p̂′ = p̂alloc(æa, 〈π̂, σ̂, Ξ̂〉) actd(act, ρ̂a) = Â(æa, ρ̂, σ̂)

(actor (x1 . . . xn) . . .) = act âddr i = âl loc(xi, 〈π̂, σ̂, Ξ̂〉)
V̂i = Â(æi, ρ̂, σ̂) ρ̂′a = ρ̂a[xi 7→ âddr i] â′ = acti(act, ρ̂′a)

〈π̂, σ̂, Ξ̂〉
̂̂p7−−−−→
Create

〈π̂ t [p̂ 7→
{
〈ko(pid(p̂′)), κ̂, â, m̂b〉

}
]

t [p̂′ 7→
{
〈wait, ε, â′, êmpty〉

}
],

σ̂ t [âddr i 7→ V̂i], Ξ̂〉

AbsT-Create

π̂(p̂) 3 〈ev((become æa æ1 . . .æn), ρ̂), κ̂, â, m̂b〉
actd(act, ρ̂a) = Â(æa, ρ̂, σ̂)

(actor (x1 . . . xn) . . .) = act âddr i = âl loc(xi, 〈π̂, σ̂, Ξ̂〉)
V̂i = Â(æi, ρ̂, σ̂) ρ̂′a = ρ̂a[xi 7→ âddr i] â′ = acti(act, ρ̂′a)

〈π̂, σ̂, Ξ̂〉
̂̂p7−−−−−→

Become
〈π̂ t [p̂ 7→

{
〈ko(actd(act, ρ̂a)), κ̂, â′, m̂b〉

}
],

σ̂ t [âddr i 7→ V̂i], Ξ̂〉

AbsT-Become

π̂(p̂) 3 〈wait, ε, â, m̂b〉 ((t, V̂1 . . . V̂n), m̂b
′
) ∈ d̂eq(m̂b)

acti((actor (x1 . . . xn) . . . (t (y1 . . . yn) e) . . .), ρ̂b) = â

âddr i = âl loc(yi, 〈π̂, σ̂, Ξ̂〉) ρ̂′b = ρ̂b[yi 7→ âddr i]

〈π̂, σ̂, Ξ̂〉
̂̂p7−−−−−→

Receive
〈π̂ t [p̂ 7→

{
〈ev(e, ρ̂′b), ε, â, m̂b

′
〉
}

],

σ̂ t [âddr i 7→ V̂i], Ξ̂〉

AbsT-Receive

π̂(p̂) 3 〈ko(v̂), ε, â, m̂b〉

〈π̂, σ̂, Ξ̂〉
̂̂p7−→〈π̂ t [p̂ 7→

{
〈wait, ε, â, m̂b〉

}
], σ̂, Ξ̂〉

AbsT-Wait

π̂(p̂s) 3 〈ev((send æ0 t æ1 . . . aen), ρ̂), κ̂s, âs, m̂bs〉 pid(p̂r) 3 Â(æ0, ρ̂, σ̂)
π̂(p̂r) 3 〈ĉ, κ̂r, âr, m̂br〉 V̂i = A(æi, ρ̂, σ̂) m̂ = (t, V̂1 . . . V̂n)

〈π̂, σ̂, Ξ̂〉
̂̂ps7−−−→
Send

〈π̂ t [p̂s 7→
{
〈ko(pid(p̂r)), κ̂s, âs, m̂bs〉

}
]

t [p̂r 7→
{
〈ĉ, κ̂r, âr, ênq(m̂, m̂br)〉

}
],

σ̂, Ξ̂〉

AbsT-Send

π̂(p̂) 3 〈ev((send æ0 t æ1 . . . aen), ρ̂), κ̂, â, m̂b〉
pid(p̂) 3 Â(æ0, ρ̂, σ̂) V̂i = Â(æi, ρ̂, σ̂) m̂ = (t, V̂1 . . . V̂n)

〈π̂, σ̂, Ξ̂〉
̂̂p7−−−→
Send

〈π̂ t [p̂ 7→
{
〈ko(pid(p̂)), κ̂, â, ênq(m̂, m̂b)〉

}
], σ̂, Ξ̂〉

AbsT-Send-Self

π̂(p̂) 3 〈ev((terminate), ρ̂),_,_,_〉

〈π̂, σ̂, Ξ̂〉
̂̂p7−−−−−−−→

Terminate
〈π̂, σ̂, Ξ̂〉

AbsT-Terminate

Figure 6 Abstract transition relation for λα programs. ECOOP 2017

40:16 Mailbox Abstractions for Static Analysis of Actor Programs

5 Mailbox Abstractions

The representation of the actors’ mailboxes M̂box is a parameter to the analysis. In this
section we describe multiple sound instantiations of this parameter. Because mailboxes are
merely containers of messages, they do not depend on the values of the messages themselves.
Therefore, whether abstract or concrete messages are stored in the abstract mailboxes does
not influence their properties nor soundness, and we describe mailbox abstractions in the
context of concrete messages for the sake of clarity. Analogous to Section 3.4, it suffices to
provide definitions for the following. We define α and v for each mailbox abstraction and
provide complete soundness proofs in an accompanying technical report2.

(v) ⊆ M̂box × M̂box is a partial order relation.
α : Mbox → M̂box is the abstraction function.
ênq : M̂essage × M̂box → M̂box enqueues a message at the back of a mailbox.
d̂eq : M̂box → P(M̂essage × M̂box) dequeues a message from the front of a mailbox.
Depending on the abstraction, this operation may be non-deterministic. Each element of
the resulting set is a tuple containing the message dequeued from the mailbox and the
subsequent mailbox.
ŝize : M̂box → N ∪ {∞} computes the size of a mailbox, and may over-approximate.
êmpty : M̂box represents the empty mailbox.

A mailbox abstraction is sound if all of the above definitions are sound over-approximations
of their concrete counterparts. Formally, this means the following.

ênq is a sound over-approximation of enq: ∀m,mb : α(enq(m,mb)) v ênq(m,α(mb)).
d̂eq is a sound over-approximation of deq: ∀m,mb,mb′ : (m,mb′) ∈ deq(mb) =⇒
∃m̂b

′
, (m, m̂b

′
) ∈ d̂eq(α(mb)) ∧ α(mb′) v m̂b

′
.

ŝize is a sound over-approximation of size: ∀mb, size(mb) ≤ ŝize(α(mb)).
êmpty represents the empty mailbox empty: α(empty) = êmpty.

5.1 Categorization of Mailbox Abstractions
We now describe one unbounded (Multiset) and four bounded (Powerset, Bounded List,
Bounded Multiset, Graph) mailbox abstractions. When the domain of messages is finite, all
bounded mailbox abstractions are also finite. The domain of messages is finite if the value
domain itself is finite, which is the case when abstract process identifiers are also finite. Note
that a finite number of abstract process identifiers does not limit the analysis to programs
with bounded actors, as discussed in Section 7.5.

Ordering No Ordering
Multiplicity List, Bounded List (§5.3) Multiset (§5.4), Bounded Multiset (§5.5)
No Multiplicity Graph (§5.6) Powerset (§5.2)
Table 1 Categorization of the concrete List mailbox and five mailbox abstractions.

Table 1 depicts a two-dimensional categorization of the mailbox abstractions. A mailbox
abstraction preserves message ordering information if it can encode which messages have
arrived before others (partially or up to some bound), that is, α(m1 :: m2 :: mb) 6= α(m2 ::
m1 :: mb). A mailbox abstraction preserves message multiplicity if it can encode the number

2 https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf.

https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:17

of times a message has been received (up to some bound), that is, there exists a bound such
that α(m : mb) 6= α(m : m : mb). For completeness, Table 1 also categorizes the concrete
(unbounded) List mailbox introduced in Section 3.4.

5.2 Powerset Abstraction

The powerset abstraction, used by D’Osualdo et al. [17], abstracts a concrete mailbox to the
set of messages it contains.

m̂b ∈ PS = P(Message)
emptyPS = ∅

enqPS(m, m̂b) = m̂b ∪ {m}

deqPS(m̂b) =
{

(m, m̂b), (m, m̂b −m) | m ∈ m̂b
}

sizePS(∅) = 0

sizePS(m̂b) =∞

Though sound, this coarse abstraction only keeps track of which messages are present in the
mailbox, and preserves neither ordering nor multiplicity of messages.

5.3 Bounded List Abstraction

Combining the powerset abstraction with a bounded concrete mailbox results in the bounded
list abstraction. It is defined as follows for a bound of n, where αLn

is the abstraction
function that converts a list to a set if its length exceeds the bound.

m̂b ∈ Ln = Mbox | PS
emptyLn

= ε

enqLn
(m, m̂b) = enqPS(m, m̂b) if m̂b ∈ PS

= αLn(enq(m, m̂b)) if m̂b ∈ Mbox

deqLn
(m̂b) = deqPS(m̂b) if m̂b ∈ PS

= deq(m̂b) if m̂b ∈ Mbox

sizeLn(m̂b) = sizePS(m̂b) if m̂b ∈ PS

= size(m̂b) if m̂b ∈ Mbox

We write L≥n to denote bounded list abstractions with a bound of at least n. This sound
abstraction preserves full precision over the messages in a mailbox —ordering and multiplicity
are both preserved— up to the point where the bound is reached. Once the number of
messages in the mailbox exceeds the bound n, the bounded list abstraction behaves like the
powerset abstraction, rendering it finite.

5.4 Multiset Abstraction

The list of messages can be abstracted to a multiset that keeps track of the multiplicity of
each message, but has no ordering information.

m̂b ∈ MS = M → N
emptyMS = λx.0

enqMS(m, m̂b) = m̂b[m 7→ m̂b(m) + 1]

deqMS(m̂b) = {(m, m̂b[m 7→ m̂b(m)− 1])

| m ∈ Dom (mb) ∧ m̂b(m) ≥ 1}

sizeMS(m̂b) =
∑

m∈Dom(m̂b)

m̂b(m)

The multiset abstraction is sound but unbounded: there is no bound on the number of times
each message may appear.

ECOOP 2017

40:18 Mailbox Abstractions for Static Analysis of Actor Programs

5.5 Bounded Multiset Abstraction
The multiset abstraction can be made finite by imposing a bound on the multiplicity of each
message. Once this bound is exceeded for a message, the multiplicity of that message is
abstracted and becomes ∞.

m̂b ∈ MSn = M → (N≤n ∪ {∞})
emptyMSn

= λx.0

sizeMSn
(m̂b) =

∑
m∈Dom(m̂b)

m̂b(m)

enqMSn
(m, m̂b) = m̂b[m 7→ m̂b(m) + 1] if m̂b(m) < n

= m̂b[m 7→ ∞] otherwise

deqMSn
(m̂b) =

{
(m, m̂b[m 7→ m̂b(m)− 1]) | m ∈ Dom(m̂b) ∧ 1 ≤ m̂b(m) ≤ m

}
∪
{

(m, m̂b), (m, m̂b[m 7→ 0]) | m ∈ Dom(m̂b) ∧ m̂b(m) =∞
}

We write MS≥n to denote multiset abstractions with a bound of at least n.

5.6 Graph Abstraction
We propose graphs as a new mailbox abstraction that preserves ordering. A mailbox is
abstracted by a graph in which the nodes correspond to messages and the edges denote an
ordering relation between messages: an edge between node a and b indicates that b appears
after a in the mailbox. This abstraction also maintains information about the first and last
message in the mailbox. Figure 7 depicts the following evolution of a mailbox using this
abstraction.

Enqueuing message 0 on the empty mailbox creates a node 0, and makes the first (f)
and last (l) pointers point to this node (Figure 7a).
Enqueuing message 1 creates a new node connected to the previous first node, updates
the first pointer, but leaves the last pointer as is (Figure 7b).
Enqueuing message 0 does not create a new node since the node 0 is already in the graph,
but does add a new edge from 1 to 0, and updates the first pointer (Figure 7c).
Dequeuing a message yields the message pointed by the last node. The resulting mailbox
has the same graph, but the last node is updated to point to a successor of its current
node (Figure 7d).

Informally, upon a dequeue operation, the node pointed by the l pointer is returned, and the
mailbox is updated so that the last pointer points to a successor node of the returned node.
Upon a queue operation, a new node is added with the corresponding message, the f pointer
is updated to point to this new node, and an edge is added between this new node and the
old node pointed by the f pointer. The size of the mailbox is known only when there is a
single path from the l node to the l node, otherwise the size is approximated by ∞.

0

f l

(a)

0

1
f l

(b)

0

1
f l

(c)

0

1
f l

(d)

Figure 7 Visual representation of the graph abstraction.

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:19

m̂b ∈ G = (P(Message)
× P(Message ×Message)
×Message ×Message) ∪ {⊥}

emptyG = 〈∅,∅,⊥〉

sizeG(⊥) = 0
sizeG(〈V,E, f, l〉) = 1 + PathLength(l, f, 〈V,E〉)

enqG(m,⊥) = 〈{m} , {} ,m,m〉
enqG(m, 〈V,E, f, l〉) = 〈V ∪ {m} , E ∪ {〈f,m〉} ,m, l〉

deqG(⊥) = ∅
deqG(〈V,E, f, l〉) = {(l,⊥)} if | {(l, l′) ∈ E | l′ ∈ V } | = 0
deqG(〈V,E, f, l〉) = {(l, 〈V,E, f, l′〉) | (l, l′) ∈ E, l′ ∈ V } otherwise

PathLength (defined in the accompanying technical report3) computes the length of the
unique path between l and f . If no such unique path exists, it over-approximates with ∞.
This sound abstraction preserves ordering information but does not preserve multiplicity.
However, when there exists a single path from l to f , the size of the mailbox is equal to the
length of that path. Function PathLength returns n if there is a single path between l and
f , and this path has length n. Otherwise, it returns ∞. For example, this is the case in
Figures 7a and 7b, but not in Figure 7c nor in Figure 7d. The graph abstraction is finite
when the domain of messages is finite, and needs no bounding.

6 Evaluation

We used our implementation (Section 6.1) to evaluate the applicability of the different
mailbox abstractions on a set of benchmark programs (Section 6.2). The experiments were
executed with Scala 2.12.1 on a MacBook Pro with a 2.8 GHz i7 processor and 16 GB of
memory. We compare mailbox abstractions in terms of running time of the analysis and size
of the flow graph generated (Section 6.3), and precision (Section 6.4). Timing information
represents the average of running each benchmark 10 times after 2 warmup runs. We also
compare our implementation with Soter (Section 6.5), a state-of-the-art analyzer for Erlang,
and conclude with some remarks on soundness (Section 6.6).

6.1 Implementation
We implemented the technique presented in this paper in a modular static analysis tool [37],
which is freely available4. The prototype is implemented in Scala and supports the actor
model of λα on top of a subset of R5RS Scheme. It implements the mailbox abstractions
presented in Section 5. We incorporated two additional optimizations: global store widening
and abstract counting. Global store widening [38] is an abstraction that reduces the precision
of the analysis in order to reach a fixed point faster. Abstract counting [34] replaces joins
with updates in the process map when it is known that a process identifier maps to a single
abstract actor.

6.2 Benchmarks
We translated benchmarks from multiple sources to λα, remaining as close as possible to
their original implementation. We unrolled all loops that create a fixed number of actors,

3 https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf
4 https://github.com/acieroid/scala-am.

ECOOP 2017

https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf
https://github.com/acieroid/scala-am

40:20 Mailbox Abstractions for Static Analysis of Actor Programs

in order to benefit from the additional precision offered by abstract counting. Solutions to
overcome this need for unrolling loops are given in Section 7.5. Moreover, in order to compare
our approach with Soter, which analyzes Erlang programs, we also faithfully translated all
the benchmarks in Erlang. The correspondance between the λα and Erlang versions of the
benchmarks is as close as possible. We used the following benchmark programs for evaluation,
which reflect specific patterns of mailboxes in actor programs and are in line with related
work. They range from 12 LOC to 32 LOC.

pp, count, count-seq, fjt-seq, fjc-seq: benchmark programs from the Savina bench-
mark suite [27], translated from Scala.
factorial, stack: benchmark programs from Agha [1], translated from pseudo-code.
cell: a typical example actor program.
parikh, pipe-seq, unsafe-send, safe-send, state-factory, stutter: benchmark
programs from Soter [16], translated from Erlang.

Note that all the benchmarks create a fixed number of actors (Table 2). When run with
abstract semantics, this can correspond to the same number of abstract actors, or to fewer
abstract actors, where one abstract actors models the behavior of a group of concrete actors
(e.g., in factorial). We did not target benchmarks with an unbounded number of concrete
actors, as this is an orthogonal problem to the points discussed in this paper. We discuss
this case in Section 7.5.

6.3 Running Time and Flow Graph Size

We measured the impact of the different mailbox abstractions on the size of the flow graph
generated by the analysis. Similarly to bounded model checking [6], the bounds for the
multiset and list mailbox abstractions were determined by running each benchmark with
increasing bounds (n = 1, 2, . . .) for each of these bounded abstractions, selecting the lowest
bound yielding maximal precision.

Benchmark P PS (powerset) MSn (multiset) Ln (list) G (graph)
#s t n #s t n #s t #s t

pp 3 21 352 1 8 24 1 8 18 8 15
count 3 83 829 1 22 90 1 21 96 22 90
count-seq 3 45 207 1 10 15 2 8 8 8 8
fjt-seq 4 201 4609 1 589 12191 1 589 9746 589 8832
fjc-seq 4 15 38 1 15 21 1 15 22 15 25
factorial 8 1486+ ∞ 1 46 1009 1 52 1644 22 155
stack 3 85 636 1 42 46 4 16 13 16 13
cell 3 70 313 1 23 18 2 15 11 15 12
parikh 3 31 49 1 8 7 2 8 7 8 8
pipe-seq 4 2662+ ∞ 1 24 56 1 24 47 24 55
unsafe-send 2 4 4 1 3 3 1 3 3 3 3
safe-send 2 100 273 1 32 29 4 28 17 30 19
state-factory 3 76 553 1 43 274 1 160 745 214 814
stutter 2 28 76 1 60 103 1 34 79 15 23
Table 2 Number of states (#s) and time taken (t, in milliseconds) to generate the flow graphs

for each bounded mailbox abstraction. A time of ∞ means that the time limit of 60 seconds was
exceeded; in this case #s is the number of states that have been explored when the time limit was
reached. The size of the smallest flow graph on each row is underlined. The column P indicates the
number of processes for each benchmark.

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:21

From the results of our experiments, summarized in Table 2, we conclude that the graph
abstraction generally yields the smallest, or close to the smallest, number of states. Using
the graph abstraction also resulted in the lowest running time in 7 out of 14 benchmarks.
The powerset abstraction, on the other hand, yields comparatively poor results in general,
timing out in 2 out of 14 benchmarks.

The results also show that in 4 out of 14 benchmarks the bound for the list abstraction
needs to be higher than the bound for the multiset abstraction to achieve maximal precision.
In the count-seq benchmark, for example, a counting actor receives two kinds of messages:
increment and retrieve. The bounded list abstraction therefore requires a bound of 2 to
analyze this program precisely. On the other hand, the bound for the multiset abstraction is
not on the size of the mailbox, but at the level of individual messages. The increment and
retrieve messages appear only once, and therefore the multiset mailbox abstraction can
analyze this program precisely with a bound of 1.

6.4 Precision

To measure the precision of the different mailbox abstractions, we compared mailboxes and
dequeued messages during static analysis with their corresponding concrete values. Resulting
from over-approximation, a spurious abstract element lacks corresponding concrete elements
in actual runs of the program. The more spurious elements, the less precise the results of an
analysis. We counted the following spurious elements in the analysis results and summed the
results for all benchmarks (Table 8).
1. Spurious mailboxes.
2. Spurious messages resulting from spurious mailboxes (Spurious Messages #1).
3. Spurious messages resulting from non-spurious mailboxes (Spurious Messages #2).
Any message dequeued from a spurious mailbox is a spurious message, directly linking the
number of such spurious messages to the number of spurious mailboxes. This link is not that
direct for spurious messages resulting from non-spurious mailboxes, and at least a different
mailbox abstraction is required to decrease the number of spurious messages in this category.
For example, a non-empty mailbox will always yield spurious messages if abstracted by a
powerset, no matter the precision of the other abstractions used in the analysis.

0 20 40 60 80 100 120 140 160 180 200 220 240

Graph

Bounded List

Bounded Multiset

Powerset

3

27

27

15

19

41

147

15

17

25

67

Number of spurious elements

Spurious Mailboxes
Spurious Messages #1
Spurious Messages #2

Figure 8 Precision metrics for the different mailbox abstractions (lower is better).

The results show that the coarse powerset abstraction is the most imprecise abstraction,
resulting in many spurious elements. These spurious elements in turn result in spurious
program states (Section 6.3), rendering the abstraction not scalable. This makes the use of
the powerset abstraction unsuitable for proving program properties directly (Section 6.5).

ECOOP 2017

40:22 Mailbox Abstractions for Static Analysis of Actor Programs

The multi-set abstraction benefits from higher precision because it preserves multiplicity,
therefore resulting in fewer spurious mailboxes. However, because it lacks order information,
it does not improve over the powerset abstraction in the number of spurious messages
resulting from non-spurious mailboxes.

The list and graph abstraction preserve both multiplicity and ordering, which renders
them more precise. On benchmarks with an unbounded number of messages, both lose some
precision. However, when the messages in an unbounded mailbox follow a specific pattern,
the graph abstraction yields a better precision than the bounded list abstraction. This is
because the list abstraction reduces to a powerset once the bound is reached, thereby losing
ordering information. This is the case in the stutter benchmark, where the list abstraction
results in 10 spurious elements, while the graph analyzes it with full precision (i.e., without
spurious elements).

The only benchmark where the graph abstraction yields more spurious elements than
the other abstractions is state-factory. This is because this benchmarks contains an actor
receiving a specific message an unbounded number of times, as well as a single instance of
another message. Due to the specific message being received an unbounded number of times,
the graph abstraction does not maintain the multiplicity information over the message that is
unique. Using the bounded multiset abstraction on the other hand preserves this multiplicity
and yields no spurious elements. Using the powerset and bounded list abstractions does not
preserve this multiplicity information, yielding spurious elements. However because these
abstractions have a smaller domain size, they produce less spurious mailboxes in comparison
with the graph abstraction (2 for the powerset abstraction, 3 for the bounded list abstraction,
6 for the graph abstraction).

6.5 Comparison with Soter
We compare our analysis of λα with Soter, a state-of-the-art analysis tool for Erlang
programs [17]. We translated our benchmarks to Erlang in order to analyze them with Soter.
The result of running Soter and our analysis on these benchmarks is given in Table 3. Some
benchmarks have unbounded mailboxes, hence there is no bound to prove; other benchmarks
make no use of the error construct, hence the absence of error is trivial. These benchmarks
are therefore not included in Table 3.

For both Soter and our technique, column Abs. lists the abstractions that enable
verification of either the absence of errors or the bound on mailboxes. This is with a simple
query on the generated flow graph alone in our case, and with some more complex post-
processing for Soter. In the case of Soter, the only tunable parameter is the data abstraction
depth, which varies between 0 and 2. We chose the lowest data abstraction depth that could
be used to verify the properties, and else used an abstraction depth of 2. In the case of our
technique, we list all mailbox abstractions that enabled proving each program property. In
practice, choosing an abstraction to verify each program can be automated by running the
analysis with each abstraction, increasing the bound for bounded abstractions, until one is
able to prove the property. If no abstraction can be used to prove the property, one can
conclude that either the property does not hold, or that the analysis yields a false positive.
Overall, we see that our technique is able to verify mailbox bounds and the absence of
run-time errors in a similar amount of time as Soter. With a proper mailbox abstractions
the analysis takes less than one second for each benchmark.

An important distinction between our approach and Soter is that Soter generates a coarse
flow graph as the model of a program, and then performs model checking on this graph
to verify program properties. Our technique constructs a more precise flow graph of the

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:23

Soter Us
Benchmark Type Safe Res. Abs. t (ms) Res. Abs. t (ms)
parikh Err. 3 3 D0 38 3 MS≥1, L≥1, G 7− 8
unsafe-send Err. 7 7 D0 13 7 PS ,MS≥0, L≥0, G 3− 4
safe-send Err. 3 3 D1 267 3 L≥4, G 17− 19
stutter Err. 3 7 D2 53 3 G 23− 23
stack Err. 3 7 D2 2260 3 L≥4, G 13− 13
count-seq Err. 3 7 D2 109 3 L≥2, G 8− 8
cell Err. 3 7 D2 383 3 L≥2, G 11− 12
pipe-seq Bnd. 3 3 D0 165 3 MS≥1, L≥1, G 47− 55
state-factory Bnd. 3 3 D0 622 3 MS≥1, G 274− 814
pp Bnd. 3 3 D0 95 3 MS≥1, L≥1, G 15− 24
count-seq Bnd. 3 3 D0 71 3 MS≥1, L≥2, G 8− 10
cell Bnd. 3 7 D2 383 3 MS≥1, L≥2, G 11− 18
fjc-seq Bnd. 3 7 D2 81 3 MS≥1, L≥1, G 21− 25
fjt-seq Bnd. 3 7∗ n.a. n.a. 7 n.a. n.a.
Table 3 Comparison with Soter. Column Type is the verified property: absence of run-time errors

(Err.) or bound on some mailbox (Bnd.). Column Safe is the expected analysis result. For both
Soter and our technique, column Res. gives the result of the analysis, column t is the running time
of the full analysis, and column Abs. lists the abstractions used. The time given for our technique is
the range of the time taken by the abstractions listed in Abs.

program on which the verification can be performed directly, not requiring a separate model
checking step to prove the absence of run-time errors or bounds on mailboxes. To highlight
this difference, consider the parikh benchmark. It contains a server actor that expects
init as a first message, but throws an error if it receives a second init message. With a
powerset mailbox abstraction, which does not preserve multiplicity, the error is reachable in
the graph generated by Soter. However, it can be proved unreachable by performing an extra
model-checking step. On the other hand, our approach benefits from improved precision
from the mailbox abstraction, resulting in a smaller and more precise flow graph that does
not contain the error state. No further steps are therefore required.

Additionally, we are able to handle programs that Soter cannot handle. For example,
stutter needs a mailbox abstraction that preserves ordering information among an un-
bounded number of messages following the pattern of Figure 7, and for which the graph
abstraction is ideally suited. As another example, stack needs a mailbox abstraction that
preserves ordering information on four consecutive messages. Note that on fjt-seq, our
technique fail to prove the required bound. However, Soter produces unsound results: it
proves a bound that is lower than the expected bound.

6.6 Soundness
The approach presented in this paper combines sound techniques: systematic abstraction
of abstract machines [38], ordered macro-stepping semantics (a variant of macro-stepping
semantics of Agha et al. [2]), and sound mailbox abstractions.. To prove the soundness of the
analysis, we first note that the abstract semantics over-approximate the concrete semantics.

I Theorem 1 ((̂7−→) is a sound over-approximation of (7−→)). If we have ς1
p7−→
E

ς2, and

α(ς1) v ς̂1, then ∃ς̂2 such that ς̂1
p̂7−→
E

ς̂2, α(ς2) v ς̂2 and α(p) = p̂.

Proof. The proof follows a similar structure as in Van Horn and Might [38] and D’Osualdo [15],

ECOOP 2017

40:24 Mailbox Abstractions for Static Analysis of Actor Programs

and is based on the soundness of mailbox abstractions (proven in the accompanying technical
report5). Note that any address allocation strategy leads to a sound analysis [32, 23]. J

Our abstract version of macro-stepping semantics combines multiple small steps into a
macro-step, in a sound manner (Theorem 3).

I Theorem 2 ((̂7−→∗↓) is a sound over-approximation of (7−→∗↓)). If we have ς1
p7−→
E

∗↓
ςN and

α(ς1) v ς̂N , then ∃ς̂N such that ς̂1
p̂7−→
E

∗↓
ς̂N , α(ςN) v ς̂N and α(p) v p̂.

Proof. The proof is by induction on the rules of 7−→∗↓. For the cases M-Stop and M-
Blocked, the proof directly follows from Theorem 1. The case M-Main consists of two
parts: a first step of ̂7→, proven by Theorem 1, and a second step of ̂7→∗↓ that follows by the
induction hypothesis. J

I Theorem 3 ((̂7−→M) is a sound over-approximation of (7−→M)). If we have ς1
p7−→
E

M
ςN and

α(ς1) v ς̂N , then ∃ς̂N such that ς̂1
p̂7−→
E

M

ς̂N , α(ςN) v ς̂N and α(p) v p̂.

Proof. A macro-step is the composition of an unrestricted small-step followed by a restricted
multi-step. Soundness therefore follows from Theorems 1 and 2. J

Our analysis therefore forms a sound over-approximation of the concrete semantics of a
program.

7 Related Work

In this paper, we aim at providing a sound over-approximation of the behavior of actor
programs. A number of existing tools supporting actors aim for a different goal: providing
a very precise under-approximation. That is, tools based on model checking and concolic
testing can detect errors in actor programs, based on a number of concrete executions of
a program. They are said to be sound for defect detection [7] in that any detected error is
an error that will arise under certain conditions. However, such tools can only prove the
absence of errors by exploring the entire set of possible executions of a program, which might
not be finite due to the numerous sources of unboundedness. Our technique, in contrast,
is sound for correctness: if our technique cannot detect a defect, it proves that the given
program is free of that defect under all possible inputs and interleavings. However, if a defect
is detected, it might be a false positive resulting from a too coarse abstraction. Identifying
whether a detected defect is a false positive or a true defect is up to the user of the analysis,
and can be a burden if the number of false positives is high. Reducing the number of false
positives of an analysis is important in order to reduce the burden on the user [9].

Similarly to D’Osualdo et al. [17], we apply the abstracting abstract machine (AAM)
technique of Van Horn and Might [38] to actor programs. This technique enables a systematic,
sound abstraction of concrete semantics given as an abstract machine. Instead of applying
AAM to build a coarse model of the program and then performing model-checking on
that model (as done by D’Osualdo et al. [17]), we use AAM as the only step in our static
analysis. We show that with proper mailbox abstractions, this single step is sufficient to
verify properties such as absence of errors and mailbox bounds, with a better precision than

5 https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf

https://soft.vub.ac.be/~qstieven/ecoop2017/techreport.pdf

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:25

D’Osualdo et al. [17]. Our technique has two limitations: it does not deal with programs
in which the number of actors is unbounded, and it reasons about every possible message
interleaving. Both of these problems impact the scalability of the technique, but nonetheless
should not overshadow the contributions of this paper. Indeed, our formalizations and
observations of the properties of different mailbox abstractions are applicable to other static
analysis techniques than AAM.

7.1 Actor Languages
In this paper, we focus on actors following the classical actor model introduced by Agha [1].
The foundations of this model have been formalized in detail by Agha et al. [2], with the
difference that mailboxes are represented by multisets. We represent concrete mailboxes
for each actor by queues, in order to be able to model other mailbox formalisms and
implementations that assume that mailboxes are ordered [1, 25, 24, 3, 20]. Another difference
with Agha et al. [2] is that we do not restrict values that can be communicated: our
formalization supports messages that contain closures. For a recent survey of existing actor
models and their specificities, we refer to De Koster et al. [14].

The concept of macro-stepping is introduced in Agha et al. [2], where a macro step is
defined as multiple small steps made within a single actor between the reception of two
messages. We introduce ordered macro-stepping, a finer-grained variant of macro-stepping
that properly accounts for interleavings of message sends. This is because regular macro-
stepping is not sound for analyzing programs from ordered-message mailbox actor models.

7.2 Abstract Interpretation of Actor Programs
Huch [26] represents some of the earliest work on static analysis of actors-based programs
through abstract interpretation. The author identifies four sources of unboundedness that
render analyzing actor programs challenging: data unboundedness, stack unboundedness,
mailbox unboundedness, and unboundedness of the number of spawned processes. He solves
the first two sources of unboundedness, and mitigates the last two by framing the analysis in
the context of programs that “use only finite parts of the message queues and create only
finitely many processes”. Our analysis deals with unbounded number of messages, but we
leave the problem of unbounded processes for future work.

A closely related work to ours is Soter [16, 17], to which we compare in Section 6. Static
checks included in Erlang’s analyzer dialyzer [7, 8] are sound for defect detection. Our
approach is over-approximative and therefore sound for correctness.

Garoche et al. [22] present an abstract interpretation approach to verify properties of
an actor calculus. The focus is on abstractions that enable reasoning about the number of
actors bound to a process identifier, while this paper focuses on abstractions to reason about
the mailbox content of an actor. Garoche et al. [21] extends the earlier approach to detect
orphan messages in actor programs, using a vector addition system, similarly to D’Osualdo et
al. [17]. The difference with our work is that we reason about the content of mailboxes while
performing the control-flow analysis, while both Garoche et al. [21] and D’Osualdo et al. [17]
only do so at a later stage. Moreover, Garoche et al. [21] uses the multiset representation for
concrete mailboxes, while we take ordering information into account.

7.3 Type Systems
Multiple type systems have been formalized for actor programs. However, most of them only
focus on detecting type errors in the sequential subset of the language [29, 30]. A notable

ECOOP 2017

40:26 Mailbox Abstractions for Static Analysis of Actor Programs

exception is Dagnat and Pantel [11]. This type system focuses on detecting messages that
will never be handled. However, it reasons about global properties of actors, while our
analysis is able to reason about actors at different moments in their lifetime.

7.4 Model Checking and Specification Logics
Dam and Fredlund [12] introduce a specification logic and proof system for Core Erlang
programs that can be used to perform model-checking on Erlang programs. This approach has
been integrated in the Erlang Verification Tool [4], later extended to deal with OTP-specific
constructs such as gen_server [5]. It supports verifying that an implementation satisfies a
given specification, but is not fully automated like our approach.

Both dCUTE [36] and Basset [28] perform automated testing on actor programs and
exploit reduction techniques to reduce the size of the explored state space. dCUTE uses
concolic testing and incorporates dynamic partial order reduction (DPOR), while Basset uses
model checking and allows to choose between DPOR or an actor-specific state comparison
reduction technique. Both rely on concrete execution of the program, and only terminate if
the program itself terminates. These techniques are sound for defect detection, while ours is
sound for correctness and guaranteed to terminate in finite time. A common point is the
use of macro-stepping to reduce the number of interleavings to explore. However, as we do
assume ordering on the mailbox, we use the finer-grained ordered macro-stepping.

7.5 Limitations and Future Work
The main limitations of our work have an impact on the scalability of the analysis. They do
not diminish the contributions of this paper. The different mailbox abstractions we propose,
the evaluation of their impact on the properties of the analysis, and the adaptation of
macro-stepping semantics to actor models with ordered mailboxes are our main contributions.
These contributions are not limited to the analysis framework described in this paper.

The two main limitations, and how they could be addressed in the future, are the following.
The use of abstract counting is crucial to obtain the precise results of Section 6. Without
it, the analysis is unable to yield useful results. But even with abstract counting, results
can become too imprecise if an abstract process identifier corresponds to more than one
concrete actor. This is why we had to adapt some benchmarks in order to have different
call sites for each created actor, so that each would get associated with a different process
identifier. One solution to this problem is using a more precise context-sensitivity, so that
multiple actors created at the same call site in different contexts are mapped to different
process identifiers. But, the analysis and its precision have to be finite, so precision has
to be lost at some point. To reason precisely about programs with an unbounded number
of actors (e.g., where the number of actors spawned is dependent on user input), this
precision loss will have to be remedied.
While our analysis uses macro-stepping to reduce the amount of non-determinism, it still
explores a program under all the possible message interleavings. Scaling to larger programs
where that number of interleavings can become tremendous remains problematic. There
is extensive literature on how to tackle this problem in the context of shared-memory
concurrency [35, 18], and it has also been explored in the context of concolic testing of
actor programs [36, 28]. We plan on adapting these techniques to our framework.

Note that in the language considered, messages are assumed to be received in the same
order as sent. This limits the analysis to a local setting. Extending the analysis to a

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:27

distributed setting where messages may be reordered under certain conditions6 would require
to relax this assumption.

We did not discuss the possible extension of this work to analyze programs that do not
guarantee actor isolation. In order to analyze for example actor programs written in Scala,
which may contain actors that share memory, it is necessary to adapt the analysis. However,
the necessary changes are isolated thanks to the modular design of our approach: one has to
introduce a new effect to represent reads and writes to shared memory, and to adapt the
macro-stepping semantics so that a macro-step is interrupted upon side effects. This is done
by redefining function f of Section 3.6.

8 Conclusion

We presented a framework for statically analyzing actor-based programs through abstract
interpretation. Starting from the concrete semantics of an actor language, we apply systematic
abstraction in order to obtain an abstract interpreter for that language. We introduce and
incorporate a finer-grained variant of macro-stepping that we call ordered macro-stepping.
This is because several actor models feature mailboxes that preserve ordering information
about their messages, for which regular macro-stepping results in a static analysis that
may miss execution interleavings and therefore is unsound. We identify the abstraction
used for the actors’ mailboxes as a key component of any analysis for actor-based programs.
Our analysis is therefore parameterized by the mailbox abstraction used, and we provide
different instantiations of this parameter that differ in the extent to which the multiplicity
and ordering of messages is preserved.

We evaluated the applicability of the different mailbox abstractions on a set of benchmark
programs with regard to two program properties: absence of errors, and bounds on mailbox
sizes. The use of suitable mailbox abstractions enabled our analysis to verify programs
properties that related work could not. We found that the prevalent powerset mailbox
abstraction, which preserves neither multiplicity nor ordering, is too imprecise to prove these
properties. Using a graph-based mailbox abstraction, in contrast, resulted in sufficiently
small flow graphs that enable proving them for all benchmark programs. Our results also
show that our improvements in the precision of the computed flow graphs obviate the need
for a separate model checking step.

We conclude that sound and precise abstraction of mailboxes is crucial to the precision
of any static analysis for actor-based programs. Our work demonstrates that a well-chosen
mailbox abstraction can improve the precision of the analysis significantly, thus enabling
static verification of the absence of errors and the computation of mailbox bounds.

Acknowledgements

Quentin Stiévenart is funded by the GRAVE project of the “Fonds voor Wetenschappelijk
Onderzoek” (FWO Flanders). Jens Nicolay is funded by the the SeCloud project sponsored
by Innoviris, the Brussels Institute for Research and Innovation.

6 For example, Erlang ensures that messages sent from a given actors will be received in the same order,
but nothing is guaranteed about the order of the messages sent from different actors.

ECOOP 2017

40:28 Mailbox Abstractions for Static Analysis of Actor Programs

References
1 Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, Cambridge, MA, USA, 1986.
2 Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A foundation for actor

computation. J. Funct. Program., 7(1):1–72, 1997.
3 Joe Armstrong. Programming erlang : software for a concurrent world. Pragmatic pro-

grammers. Pragmatic Bookshelf, 2007.
4 Thomas Arts, Mads Dam, Lars-Åke Fredlund, and Dilian Gurov. System description:

Verification of distributed erlang programs. In Automated Deduction - CADE-15, 15th
International Conference on Automated Deduction, Lindau, Germany, July 5-10, 1998,
Proceedings, pages 38–41, 1998.

5 Thomas Arts and Thomas Noll. Verifying generic erlang client-server implementations. In
Implementation of Functional Languages, 12th International Workshop, IFL 2000, Aachen,
Germany, September 4-7, 2000, Selected Papers, pages 37–52, 2000.

6 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking. Advances in Computers, 58:117–148, 2003.

7 Maria Christakis and Konstantinos Sagonas. Static detection of race conditions in erlang.
In Practical Aspects of Declarative Languages, 12th International Symposium, PADL 2010,
Madrid, Spain, January 18-19, 2010. Proceedings, pages 119–133, 2010.

8 Maria Christakis and Konstantinos Sagonas. Static detection of deadlocks in erlang. Tech-
nical report, 2011.

9 Patrick Cousot. The verification grand challenge and abstract interpretation. In Verified
Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference, VSTTE
2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected Papers and Discussions,
pages 189–201, 2005.

10 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 238–252. ACM, 1977.

11 Fabien Dagnat and Marc Pantel. Static analysis of communications for erlang. In Proceed-
ings of 8th International Erlang/OTP User Conference, 2002.

12 Mads Dam and Lars-Åke Fredlund. On the verification of open distributed systems. In
Proceedings of the 1998 ACM symposium on Applied Computing, SAC’98, Atlanta, GA,
USA, February 27 - March 1, 1998, pages 532–540, 1998.

13 Joeri De Koster, Stefan Marr, Tom Van Cutsem, and Theo D’Hondt. Domains: Sharing
state in the communicating event-loop actor model. Computer Languages, Systems &
Structures, 45:132–160, 2016.

14 Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 43 years of actors: a
taxonomy of actor models and their key properties. In Proceedings of the 6th International
Workshop on Programming Based on Actors, Agents, and Decentralized Control, AGERE
2016, Amsterdam, The Netherlands, October 30, 2016, pages 31–40, 2016.

15 Emanuele D’Osualdo. Verification of Message Passing Concurrent Systems. PhD thesis,
University of Oxford, 2015.

16 Emanuele D’Osualdo, Jonathan Kochems, and Luke Ong. Soter: an automatic safety
verifier for erlang. In Proceedings of the 2nd edition on Programming systems, languages
and applications based on actors, agents, and decentralized control abstractions, AGERE!
2012, October 21-22, 2012, Tucson, Arizona, USA, pages 137–140, 2012.

17 Emanuele D’Osualdo, Jonathan Kochems, and Luke Ong. Automatic verification of erlang-
style concurrency. In Static Analysis - 20th International Symposium, SAS 2013, Seattle,
WA, USA, June 20-22, 2013. Proceedings, pages 454–476, 2013.

Q. Stiévenart, J. Nicolay, W. De Meuter, C. De Roover 40:29

18 Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model check-
ing software. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2005, Long Beach, California, USA, January
12-14, 2005, pages 110–121, 2005.

19 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN’93 Conference on
Programming Language Design and Implementation (PLDI), Albuquerque, New Mexico,
USA, June 23-25, 1993, pages 237–247, 1993.

20 Simon Fowler, Sam Lindley, and Philip Wadler. Mixing metaphors: Actors as channels and
channels as actors. arXiv preprint arXiv:1611.06276, 2016.

21 Pierre-Loïc Garoche. Static Analysis of an Actor-based Process Calculus by Abstract Inter-
pretation. PhD thesis, National Polytechnic Institute of Toulouse, France, 2008.

22 Pierre-Loïc Garoche, Marc Pantel, and Xavier Thirioux. Static safety for an actor dedicated
process calculus by abstract interpretation. In Formal Methods for Open Object-Based
Distributed Systems, 8th IFIP WG 6.1 International Conference, FMOODS 2006, Bologna,
Italy, June 14-16, 2006, Proceedings, pages 78–92, 2006.

23 Thomas Gilray, Michael D. Adams, and Matthew Might. Allocation characterizes polyvari-
ance: a unified methodology for polyvariant control-flow analysis. In Proceedings of the
21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016,
Nara, Japan, September 18-22, 2016, pages 407–420, 2016.

24 Munish K. Gupta. Akka essentials. Packt Publishing Ltd, 2012.
25 Philipp Haller. On the integration of the actor model in mainstream technologies: the

scala perspective. In Proceedings of the 2nd edition on Programming systems, languages
and applications based on actors, agents, and decentralized control abstractions, AGERE!
2012, October 21-22, 2012, Tucson, Arizona, USA, pages 1–6, 2012.

26 Frank Huch. Verification of erlang programs using abstract interpretation and model check-
ing. In Proceedings of the fourth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’99), Paris, France, September 27-29, 1999., pages 261–272, 1999.

27 Shams Mahmood Imam and Vivek Sarkar. Savina - an actor benchmark suite: Enabling
empirical evaluation of actor libraries. In Proceedings of the 4th International Workshop on
Programming based on Actors Agents & Decentralized Control, AGERE! 2014, Portland,
OR, USA, October 20, 2014, pages 67–80, 2014.

28 Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha. A framework for state-
space exploration of java-based actor programs. In ASE 2009, 24th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, Auckland, New Zealand, November
16-20, 2009, pages 468–479, 2009.

29 Anders Lindgren. A prototype of a soft type system for erlang. Master’s thesis, Uppsala
University, 1996.

30 Simon Marlow and Philip Wadler. A practical subtyping system for erlang. In Proceedings
of the 1997 ACM SIGPLAN International Conference on Functional Programming (ICFP
’97), Amsterdam, The Netherlands, June 9-11, 1997., pages 136–149, 1997.

31 Jan Midtgaard. Control-flow analysis of functional programs. ACM Comput. Surv.,
44(3):10, 2012.

32 Matthew Might and Panagiotis Manolios. A posteriorisoundness for non-deterministic ab-
stract interpretations. In Verification, Model Checking, and Abstract Interpretation, 10th
International Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009. Pro-
ceedings, pages 260–274, 2009.

33 Matthew Might and Olin Shivers. Improving flow analyses via gammacfa: abstract garbage
collection and counting. In Proceedings of the 11th ACM SIGPLAN International Confer-

ECOOP 2017

40:30 Mailbox Abstractions for Static Analysis of Actor Programs

ence on Functional Programming, ICFP 2006, Portland, Oregon, USA, September 16-21,
2006, pages 13–25, 2006.

34 Matthew Might and David Van Horn. A family of abstract interpretations for static analysis
of concurrent higher-order programs. In Static Analysis - 18th International Symposium,
SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings, pages 180–197, 2011.

35 Doron A. Peled. Ten years of partial order reduction. In Computer Aided Verification,
10th International Conference, CAV ’98, Vancouver, BC, Canada, June 28 - July 2, 1998,
Proceedings, pages 17–28, 1998.

36 Koushik Sen and Gul Agha. Automated systematic testing of open distributed programs.
In Fundamental Approaches to Software Engineering, 9th International Conference, FASE
2006, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceedings, pages 339–356, 2006.

37 Quentin Stiévenart, Maarten Vandercammen, Wolfgang De Meuter, and Coen De Roover.
Scala-AM: A modular static analysis framework. In 16th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2016, Raleigh, NC, USA,
October 2-3, 2016, pages 85–90, 2016.

38 David Van Horn and Matthew Might. Abstracting abstract machines: a systematic ap-
proach to higher-order program analysis. Commun. ACM, 54(9):101–109, 2011.

	Introduction
	Problem #1: Missing interleavings for ordered-message mailbox models
	Problem #2: Loss of message ordering and multiplicity
	Our approach

	A Simple Actor Language:
	Concrete Semantics of as an Abstract Machine
	State Space
	Atomic Expressions
	Addresses, Process Identifiers and Allocation
	Concrete Mailboxes
	Transition Relation
	Macro-Stepping Semantics
	Collecting Macro-Stepping Semantics
	Program Properties

	Abstract Interpretation of
	Abstract State Space
	Abstract Atomic Expressions
	Abstract Addresses, Process Identifiers and Allocation
	Abstract Transition Relation
	Abstract Macro-Stepping Semantics
	Abstract Collecting Macro-Step Semantics
	Abstract Program Properties

	Mailbox Abstractions
	Categorization of Mailbox Abstractions
	Powerset Abstraction
	Bounded List Abstraction
	Multiset Abstraction
	Bounded Multiset Abstraction
	Graph Abstraction

	Evaluation
	Implementation
	Benchmarks
	Running Time and Flow Graph Size
	Precision
	Comparison with Soter
	Soundness

	Related Work
	Actor Languages
	Abstract Interpretation of Actor Programs
	Type Systems
	Model Checking and Specification Logics
	Limitations and Future Work

	Conclusion

